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Abstract of the Dissertation

On the Privacy Implications of Real Time Bidding

by

Muhammad Ahmad Bashir

Doctor of Philosophy in Computer Science

Northeastern University, August 2019

Dr. Christo Wilson, Advisor

The massive growth of online advertising has created a need for commensurate amounts of user
tracking. Advertising companies track online users extensively to serve targeted advertisements. On
the surface, this seems like a simple process: a tracker places a unique cookie in the user’s browser,
repeatedly observes the same cookie as the user surfs the web, and finally uses the accrued data to
select targeted ads.

However, the reality is much more complex. The rise of Real Time Bidding (RTB) has forced
the Advertising and Analytics (A&A) companies to collaborate more closely with one another, to
exchange data about users to facilitate bidding in RTB auctions. The amount of information-sharing
is further exacerbated by how real-time auctions are implemented. During an auction, several A&A
companies observe user impressions as they receive bid requests, even though only one of them
eventually wins the auction and serves the advertisement. This significantly increases the privacy
digital footprint of the user. Because of RTB, tracking data is not just observed by trackers em-
bedded directly into web pages, but rather it is funneled through the advertising ecosystem through
complex networks of exchanges and auctions.

Numerous surveys have shown that web users are not completely aware of the amount of data
sharing that occurs between A&A companies, and thus underestimate the privacy risks associated
with online tracking. To accurately quantify users’ privacy digital footprint, we need to take into
account the information-sharing that happens either to facilitate RTB auctions or as a consequence
of them.

However, measuring these flows of tracking information is challenging. Although there is prior
work on detecting information-sharing (cookie matching) between A&A companies, these studies
are based on brittle heuristics that cannot detect all forms of information-sharing (e.g., server-side
matching), especially under adversarial conditions (e.g., obfuscation). This limits our view of the
privacy landscape and hinders the development of effective privacy tools.

xi



The overall goal of my thesis is to understand the privacy implications of Real Time Bidding,
to bridge the divide between the actual privacy landscape and our understanding of it. To that end,
I propose methods and tools to accurately map information-sharing among A&A domains in the
modern ad ecosystem under RTB.

First, I propose a content-agnostic methodology that can detect client- and server-side infor-
mation flows between arbitrary A&A domains using retargeted ads. Intuitively, this methodology
works because it relies on the semantics of how exchanges serve ads, rather than focusing on spe-
cific cookie matching mechanisms. Using crawled data on 35,448 ad impressions, I show that this
methodology can successfully categorize four different kinds of information-sharing behaviors be-
tween A&A domains, including cases where existing heuristic methods fail.

Next, in order to capture the effects of ad exchanges during RTB auctions accurately, I isolate
a list of A&A domains that act as ad exchanges during the bidding process. Identifying such A&A
domains is crucial, since they can disperse user impressions to multiple other A&A domains to
solicit bids. I achieve this by conducting a longitudinal analysis of a transparency standard called
ads.txt, which was introduced to combat ad fraud by helping ad buyers verify authorized digital
ad sellers. In particular, I conduct a 15-months longitudinal study of the standard to gather a list of
A&A domains that are labeled as ad exchanges (authorized sellers) by publishers in their ads.txt
files. Through my analysis on Alexa Top-100K, I observed that over 60% of the publishers who run
RTB ads have adopted the ads.txt standard. This widespread adoption allowed me to explicitly
identify over 1,000 A&A domains belonging to ad exchanges.

Finally, I use the list of ad exchanges from ads.txt along with the information flows between
A&A companies collected using my generic methodology to build an accurate model of the privacy
digital footprint of web users. In particular, I use these data sources to model the advertising ecosys-
tem in the form of a graph called an Inclusion graph. Through simulations on the Inclusion graph,
I provide upper and lower estimates on the tracking information observed by A&A companies. I
show that the top 10% A&A domains observe at least 91% of an average user’s browsing history
under reasonable assumptions about information-sharing within RTB auctions. I also evaluate the
effectiveness of blocking strategies (e.g., AdBlock Plus) and find that major A&A domains still
observe 40–90% of user impressions, depending on the blocking strategy.

Overall, in this dissertation, I propose new methodologies to understand the privacy implica-
tions of Real Time Bidding. The proposed methods can be used to shed light on the opaque ecosys-
tem of programmatic advertising and enable users to gain a more accurate view of their digital
footprint. Furthermore, the results of this thesis can be used to build better or enhance existing
privacy-preserving tools.

xii



Chapter 1

Introduction

In the last decade, the online display advertising industry has massively grown in size and scope.

In 2017, $83 billion were spent on digital advertising in the U.S., and double-digit growth is forecast

for each subsequent year, surpassing $125 billion in digital advertising expenditure by 2022 [3,160].

This increased spending is fueled by advances in the industry that enable ad networks to track and

target users with increasing levels of precision.

People have complicated feelings with respect to online behavioral advertising. While surveys

have shown that some users prefer relevant, targeted ads to random, untargeted ads [36, 188], this

preference has caveats. For example, users are uncomfortable with ads that are targeted based on

sensitive Personally Identifiable Information (PII) [11, 120] or specific kinds of browsing history

(e.g., visiting medical websites) [115]. Furthermore, some users are universally opposed to online

tracking, regardless of circumstance [36, 124, 188].

One particular concern held by users is their digital footprint [92, 180, 197], which I define

as the first- and third-parties that are able to track their browsing history (see § 2.1). Large-scale

web crawls have repeatedly shown that trackers are ubiquitous [61,62,74], with DoubleClick alone

being able to observe visitors on 40% of websites in the Alexa Top-100K [33]. These results paint

a picture of a balkanized web, where trackers divide up space and compete for the ability to collect

data and serve targeted ads. On the surface, this seems like a simple process: a tracker places a

unique cookie (identifier) in the user’s browser, repeatedly observes the same cookie as the user

surfs the web, and finally uses the accrued data to display them targeted ads.

However, the reality is much more complex. The modern online ad ecosystem has seen a mas-

sive shift towards an auction-based model called Real Time Bidding (RTB), where ad networks bid

on individual user impressions. As of 2018, RTB holds a 30% share in the digital advertising spend-
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ing in the U.S. [1] and has a forecasted annual growth rate of 33% between 2019 and 2024 [4]. Since

the advent of RTB, hundreds of specialized companies with various business models have emerged

in the market. On one hand, Supply Side Platforms (SSPs) help publishers (e.g., CNN, ESPN) max-

imize their revenue by helping them maintain business relationships with lucrative ad exchanges.

On the flip side, Demand Side Platforms (DSPs) work closely with advertisers (e.g., Nike, Pepsi)

to evaluate the value of each user impression and optimize bid prices during RTB auctions. Ad

exchanges implement RTB auctions, where DSPs bid on each user impression being sold by pub-

lishers via SSPs. I provide more details on the RTB ecosystem in § 2.3. In this dissertation, I

collectively refer to companies engaged in Advertising and Analytics as A&A companies.

While the RTB model brings more flexibility in the ad ecosystem, it has privacy implications

for users. First, the rise of RTB has forced A&A companies to collaborate more closely with

one another by sharing unique user identifiers through a process called cookie matching. Cookie

matching is a pre-condition for A&A companies to participate in RTB auctions and because of

this, tracking data is not just observed by A&A companies embedded directly into publishers’ web

pages, but rather the data is funneled through the advertising ecosystem via complex networks of

SSPs, exchanges, and DSPs.

Second, during the RTB auction, ad exchanges forward user impressions to several partner DSPs

to solicit bids from them. The vast majority of RTB auction are held on the server (exchange) side

and not on the client (browser) side, which means that the browser only gets redirected to the

winner of the auction and does not observe those DSPs that participate in the auction but did not

win. Although only the winner serves the user an advertisement, all participating DSPs view the

user impression. This further increases the user’s privacy digital footprint, potentially without their

knowledge.

Due to the close collaboration among A&A companies, we can no longer view them as isolated

islands of data. To capture a more realistic picture of the privacy landscape, we have to take into

account the information sharing among all A&A companies. While some users are aware that they

are being tracked online [36, 188], they may not know how much and how often their informa-

tion changes hands due to cookie matching and RTB. To date, technical limitations and incomplete

data have prevented researchers from developing accurate models to demonstrate the privacy im-

plications of RTB in the modern ad ecosystem. Due to this, we under-estimate the privacy digital

footprint of users, which, in turn, affects the development of effective privacy tools.

By understanding how the modern advertising ecosystem works, while taking into account the

effects of RTB, we may be able to develop better privacy tools for users. These tools can bring more
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transparency to the complex advertising industry and give more control to users over their privacy.

For example, as shown in [11,120], some users are uncomfortable with ads that are targeted based on

sensitive PII. With better privacy tools, these users would be able to control the attributes advertisers

use to target them.

However, despite the pressing need to understand the complexities of the advertising ecosys-

tem, we currently lack the tools to fully understand how information is being shared among A&A

companies. Furthermore, we don’t have a systematic way to enumerate all the participating DSPs

in a given auction. These limitations hinder our understanding of actual privacy leakage, beyond

the obvious third-party trackers that are directly embedded in web pages.

This dissertation posits that RTB has increased collaboration among A&A companies, which,

in turn, has increased privacy exposure for end-users. We need effective tools and methodologies

to understand these privacy implications of RTB for users, to bridge the divide between the actual

privacy landscape and our understanding of it. These techniques can provide a more realistic view

of the online advertising ecosystem, and enable users to gain a more accurate view of their privacy

digital footprint.

1.1 Problem Statement

The goal of this dissertation is to study the privacy implications of RTB. In particular, I focus on

understanding the information sharing among A&A companies, which happens either to facilitate

the RTB auctions via cookie matching or as a consequence of them. In this section, I will concretely

describe the problems with respect to mapping out these information-sharing relationships. In § 1.2,

I give an overview of the contributions this thesis makes to address these issues.

1.1.1 Information Sharing Through Cookie Matching

During an RTB ad auction, the ad exchange solicits bids from participating DSPs. This auction

happens on the server-side, which means that the DSPs receive bid requests directly from the ad

exchange and not from the browser itself. This is problematic for the DSPs, since they cannot

identify the user from the bid request, and without doing so, they cannot place meaningful bids

during the auction. The inability of DSPs to identify the user stems from the fact that the bid

request is not coming from the browser, which would have included the DSPs’ cookie in the HTTP

request. Furthermore, due to the Same Origin Policy [135] restrictions, the ad exchange cannot
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read cookies set by DSPs from the browser and share them with the DSPs through the bid request.

To circumvent this issue, ad exchanges and DSPs sync identifiers beforehand, usually through a

process known as cookie matching.

Although there has been prior empirical work on detecting information-sharing between A&A

companies [5, 65, 147], these works have three fundamental limitations. First, they rely on heuris-

tics that look for specific string signatures in HTTP messages to identify cookie matching. These

heuristics are brittle in the face of obfuscation: for example, DoubleClick cryptographically hashes

their cookies before sending them to other advertising partners [2, 147]. Hence, existing techniques

will fail to capture obfuscated information flows. Furthermore, ad exchanges that do not rely on

obfuscation might do so in the future to evade detection. I demonstrate in § 4.3 that heuristics from

prior work can miss up to 31% of information sharing partners. To identify information flows in the

face of obfuscation, we need to come up with a content-agnostic methodology.

Second, analysis of client-side HTTP messages is insufficient to detect server-side information

flows between A&A companies. This can happen if two ad networks decide to sync up user tracking

identifiers off the browser. For example, two ad networks that belong to the same parent company

can share user tracking data on the server-side, i.e., without cookie matching. In fact, Google states

in its privacy terms that “... we may combine the information we collect among our services and

across your devices for the purposes ..." [79]. In § 4.3, I highlight Google services that share

identifiers on the server-side. So, if the information is not shared through the browser, the analysis

of HTTP messages will not yield the sharing partners. This is why we need a platform-agnostic

methodology that can detect information sharing on both client- and server-side.

Finally, existing methods cannot determine the precise information flows between A&A com-

panies, i.e., which parties are sending or receiving information [5]. The fundamental problem is

that HTTP requests, and even the DOM tree itself, do not reveal the true sources of resource inclu-

sions in the presence of dynamic code (JavaScript, Flash, etc.) from third-parties. For example, if a

script t1 embedded directly in pub.com, shares identifiers with t2 using dynamic AJAX, we will

incorrectly determine pub.com as the Referer, instead of t1. This hides t1’s role as the source

of the flow. In fact, in chapter 6, I show that the Referer value is incorrect 48% of the time due to

dynamic inclusions. This misses or creates erroneous information-sharing relationships. To gain an

accurate representation of information relationships, we need a methodology that provides strong

attribution for resource inclusions.

In chapter 4, I propose a novel methodology that can detect information-sharing relationships in

a content- and platform-agnostic manner, while providing strong attribution.
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1.1.2 Information Sharing Through Ad Exchanges During RTB Auctions

This kind of information leakage happens during the auction process when the ad exchange

solicits bids from its DSP partners. To maximize revenue, the exchange sends a bid request to several

DSP partners. After evaluating the request, participating partners may submit bids. Although only

the winner of the auction gets to serve the advertisement, all other losing participants also get to see

the user impression. For example, an ad exchange e might contact ten DSP partners d1, d2, ..., d10 to

solicit bids for a user u to display advertisement on cnn.com. Irrespective of the auction winner, all

ten DSPs will learn that u visited cnn.com. This significantly increases the users’ digital footprint.

Without determining all the DSP participants in RTB auctions, we cannot gauge the extent of

privacy leakage for the user. However, since the auction happens on the server-side, it limits our

visibility into the ecosystem, and we can only observe the winner of the auction. One possible

way to enumerate all DSP partners for a given exchange e is to observe the outcome of multiple

RTB auctions held by e over time. This allows us to observe different auction winners over time,

hopefully covering all the DSP partners of e. However, data collection and analysis for this task

becomes challenging for the following two reasons:

1. We do not have a comprehensive list of ad exchanges. Identification of such a list is important

since ad exchanges have this extra “power" to disperse tracking information to multiple DSPs

during RTB auction. Without an accurate list of ad exchanges, we cannot precisely model the

digital footprint of the user.

2. RTB auctions are complicated. The winner of the auction does not necessarily have to serve

the advertisement. Frequently, the winner is an ad exchange itself and holds a new ad auction

to re-sell the advertisement space. In other words, it is common for A&A companies to

assume multiple roles in the ecosystem. For example, an ad network that provides DSP

services might act as an ad exchange in certain circumstances. For this reason, we need to

account for multiple, iterative RTB auctions when modeling users’ digital footprint.

1.2 Contributions

Next, I give an overview of the solutions I propose to address the problems discussed in § 1.1.

Our goal is to capture the effects of RTB auctions to get a better picture of the privacy digital

footprint of the user. To this end, this thesis makes the following contributions.
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1.2.1 A Generic Methodology For Detecting Information Sharing Among A&A com-
panies

Given the limitations of existing techniques [5,65,147] I describe in § 1.1.1, the first contribution

I make in this thesis is proposing a novel methodology that can detect client- and server-side flows of

information between arbitrary A&A companies using retargeted ads. Retargeted ads are the most

specific form of behavioral advertisements, where a user is targeted with ads related to the exact

products she has previously browsed (see § 2.3 for definition). For example, Bob visits nike.com

and browses for running shoes but decides not to purchase them. Bob later visits cnn.com and

sees an ad for the exact same running shoes from Nike.

My key insight is to leverage retargeted ads as a mechanism for identifying information flows

between arbitrary A&A companies. This is possible because the strict conditions that must be met

for a retargeted ad to be served, allow us to infer the precise flow of tracking information that facil-

itated the serving of the ad. Intuitively, this methodology works because it relies on the semantics

of how exchanges serve ads, rather than focusing on specific cookie matching mechanisms. Specif-

ically, instead of relying on HTTP messages to detect cookie matching, it relies on causality; i.e., if

ad network a1 observes user u browsing a product p on shop s, and if later a1 serves u a retargeted

ad for p after winning the RTB auction held by ad exchange e1, then it implies that e1 and a1 must

have shared user identifiers prior to the auction. Otherwise, a1 would have no way of identifying

u as the source of the impression during RTB (since the bid request originates from e1 and not the

browser), and would not pay the premium price to win the auction. This is explained in more detail

in section § 2.3.

My proposed technique addresses the limitations of prior works as it relies on a methodology

that detects information sharing based on causal inferences, rather than relying on HTTP content.

Thus, this methodology can defeat obfuscation and can detect server-side information sharing. It

also provides strong attribution in information-sharing flows since I record detailed provenance of

third-party resource inclusions in web pages using an instrumented version of Chromium [17] (see

details in § 4.1.2).

I demonstrate the efficacy of this methodology by conducting extensive experiments on real data.

I train 90 personas by visiting popular e-commerce sites (§ 4.1), and then crawl major publishers

to gather retargeted ads [20, 34]. To record detailed information about the provenance of third-

party resource inclusions in web pages (i.e., which resource included which other resources), all

crawls were performed using an instrumented version of Chromium [17] that records the inclusion
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chain for every resource it encounters. In total, I gather 35,448 chains associated with 5,102 unique

retargeted ads (§ 4.1).

Next, I use carefully designed pattern matching rules in § 4.3.1.1 to categorize each of the

retargeted ad chains into four different categories, which reveal 1) the pair of A&A companies that

shared information in order to serve the retarget, and 2) the mechanism they used to share the data

(e.g., cookie matching, server-side matching).

Overall, I found more than 1000 A&A domains in my dataset. These A&A domains consist

of trackers, SSPs, exchanges, and various other business models. My methodology also identified

200 cookie matching pairs, out of which 31% were missed by heuristics used by prior works to find

cookie matching. Furthermore, I provide empirical evidence that Google shares tracking data across

its services by detecting server-side information flows.

Using the methodology described above and the data collected from carefully crafted experi-

ments using retargeted ads, I identify information sharing flows between more than 1,000 A&A

companies. However, we are still a key ingredient away from gaining an accurate picture of the

privacy landscape under the RTB ecosystem: we need an accurate and comprehensive list of A&A

companies which act as ad exchanges during RTB auctions. Ad exchanges play a vital role since

within a single ad auction, they can share user tracking data with tens of other A&A companies

to solicit bids. Although I can identify ad exchanges from the data we collected, as explained in

§ 4.3.3, this technique will have both false positives and negatives. Given the “power” ad exchanges

possess, we need a more systematic way of identifying ad exchanges.

1.2.2 Transparency & Compliance: An Analysis of the ads.txt Standard

Given that we need a list of A&A companies which act as ad exchanges during RTB auc-

tions, I make use of a recently introduced transparency standard called Authorized Digital Sellers

(ads.txt). The ads.txt standard was introduced by the Interactive Advertising Bureau (IAB)

in 2017 [167]. The motivation behind ads.txt is to tackle the issue of domain spoofing, which is

a form of advertising fraud that has long plagued the RTB ecosystem.

The fundamental issue that enables domain spoofing is the opacity of the RTB ecosystem: DSPs

cannot tell which exchanges are authorized to sell impression inventory from a given publisher. This

lack of transparency gives attackers the ability to spoof inventory from any publisher. ads.txt is

designed to rectify this transparency problem by allowing publishers to state, in a machine-readable

format, which ad exchanges are authorized to sell their impression inventory [83]. To opt-in to the
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standard, a publisher must place a file named /ads.txt at the root of their website; exchanges

and advertisers (DSPs) can then download the file and verify the authenticity of bid requests.

ads.txt is meant to bring more transparency to the opaque ecosystem of RTB, by making

it explicit which third-party domains in a given first-party context are ad exchanges. In aggregate,

ads.txt data has the potential to reveal, for the first time, the relationships between publishers,

ad exchanges, and DSPs. I use this as an opportunity to gather a list of ad exchanges involved in the

RTB ecosystem.

To this end, I conduct a 15-month longitudinal, observational study of the ads.txt standard

on Alexa Top-100K publishers. This data also provides me with a unique opportunity to understand

whether ad exchanges and DSPs are complying with the ads.txt standard in the effort towards

combating domain spoofing, which was the main motivation behind the introduction of the standard.

This is an important issue on its own since it is not clear how effective the standard is in the complex

RTB ecosystem. Hence, I conduct this study to understand the following two questions:

1. Can the transparency offered by the ads.txt standard provide useful data to extract a list

of A&A domains that act as ad exchanges?

2. How effective is the ads.txt standard at combating domain spoofing? In particular, are ad

exchanges and DSPs complying with the standard?

To answer these questions, I crawl ads.txt files from Alexa Top-100K websites every month

between January 2018 and April 2019. In addition to collecting the ads.txt file, I also collect

inclusion resources from each website to gather information about the A&A companies that interact

with the website. This data allows me to observe whether exchanges and DSPs appear to be in

compliance with the rules stipulated in publishers’ ads.txt files.

With respect to transparency, ads.txt files allow us to isolate 1,035 unique domains belong-

ing to ad exchanges from 62% of the Alexa Top-100K publishers that display ads via RTB auctions.

That said, I also find that ads.txt data has a variety of imperfections, and I develop methods to

mitigate these deficiencies. Concerning compliance, I find that the vast majority of RTB ads in our

sample were bought from authorized sellers. This suggests that ad exchanges and DSPs are com-

plying with the standard. However, I also see that domain spoofing is still possible because major ad

exchanges still accept impression inventory from publishers that have not yet adopted ads.txt.

Further, I document cases where major ad exchanges purchased impressions from unauthorized

sellers, in violation of the standard.
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Now that we have a systematic way of identifying ad exchanges, we can use this list, along with

the information sharing data gathered from crawled ad inclusion chains to model the privacy digital

footprint of web users.

1.2.3 Modeling User’s Digital Privacy Footprint

So far I have discussed how the Real Time Bidding ecosystem can affect users’ privacy digi-

tal footprint. To date, technical limitations and incomplete data have prevented researchers from

developing accurate models to demonstrate the privacy implications of RTB as implemented in the

modern ad ecosystem. In this dissertation, I have proposed a generic methodology to detect informa-

tion sharing between arbitrary A&A companies. Additionally, to capture the effect of ad exchanges

on privacy leakage during RTB auctions, I use the ads.txt standard to systematically identify ad

exchanges.

We can use this data to demonstrate the effect of RTB auctions on users’ digital footprint. How-

ever, due to the enormous complexity of the ad ecosystem and close collaboration among A&A

companies, we cannot accurately determine the extent of privacy leakage if we look at RTB auc-

tions in isolation. A natural way to model this complex ecosystem is in the form of a graph. Graph

models that accurately capture the relationships between publishers and A&A companies are ex-

tremely important for practical applications, such as estimating revenue of A&A companies [74],

predicting whether a given domain is a tracker [102], or evaluating the effectiveness of domain-

blocking strategies on preserving users’ privacy.

To this end, I use the information flows between A&A companies and the list of exchanges to

model the advertising ecosystem in the form of a graph called an Inclusion graph. By simulating

browsing traces for 200 users based on empirical data, I show that the Inclusion graph can be used

to model the diffusion of user tracking data across the advertising ecosystem.

I demonstrate that due to RTB, the major A&A companies observe the vast majority of users’

browsing history. Even under restrictive conditions, where only a small number of well-connected

ad exchanges indirectly share impressions during RTB auctions, the top 10% of A&A companies

observe more than 91% of impressions and 82% of visited publishers. This is a key result as it

highlights that A&A companies observe far greater amounts of user information than what has been

demonstrated by prior works [5, 61].

Furthermore, I simulate the effects of ad and tracker blocking on information learned by A&A

companies. In particular, I evaluate the following five different blocking strategies:

9



CHAPTER 1. INTRODUCTION

1. Randomly blocking 30% of the A&A nodes from the Inclusion graph.

2. Blocking the top 10% of A&A nodes from the Inclusion graph.

3. Blocking all 594 A&A nodes from the Ghostery [73] blacklist.

4. Blocking all 412 A&A nodes from the Disconnect [52] blacklist.

5. Emulating the behavior of AdBlock Plus [7], which is a combination of whitelisting A&A

nodes from the Acceptable Ads program [190] and blacklisting A&A nodes from EasyList [54].

After whitelisting, 634 A&A nodes are blocked.

I find that AdBlock Plus (the world’s most popular ad-blocking browser extension [122, 159])

is ineffective at protecting users’ privacy because major ad exchanges are whitelisted under the

Acceptable Ads program [190]. In contrast, Disconnect [52] blocks the most information flows

to advertising domains, followed by the removal of top 10% A&A domains. However, the most

important observation throughout these experiments is that even with strong blocking methods,

major A&A domains still observe 40–70% of user impressions.

1.3 Roadmap

The remainder of this dissertation is organized as follows. In chapter 2, I provide background

and introduce key definitions for the online advertising ecosystem. I discuss how online display

advertising has moved towards the auction-based RTB ecosystem, and how A&A companies share

user identifiers using cookie matching to facilitate RTB. Then, in chapter 3, I provide a detailed

overview of related work that has motivated this dissertation.

In chapter 4, I propose a content- and platform-agnostic methodology to detect information shar-

ing between arbitrary A&A companies using retargeted ads. In chapter 5, I provide a longitudinal

analysis of the ads.txt standard to 1) isolate a list of A&A domains that act as ad exchanges

during RTB auctions, and 2) measure adoption and compliance of the standard to combat domain

spoofing fraud during RTB auctions. In chapter 6, I use techniques and datasets from my disserta-

tion to build models for determining how user tracking information gets diffused in the advertising

ecosystem. I also demonstrate the effectiveness (or lack thereof) of the ad and tracker blocking

strategies at preventing leakage of user data to A&A companies.

I conclude by providing a discussion on the findings of this dissertation and future work in

chapter 7.
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Chapter 2

Background and Definitions

In this chapter, I provide background and definitions about the online advertising ecosystem that

will be essential to the rest of this dissertation. I start by describing online display advertising and

the different entities involved. Then I discuss how the ecosystem has evolved and moved towards

targeted advertising. Finally, I give an overview of Real Time Bidding and describe how cookie

matching is done to facilitate displaying of an advertisement through RTB.

2.1 Online Display Advertising

In order to provide free accessibility to their content, publishers (e.g., news websites, blogs,

etc.) generate revenue by displaying ads on their website from a plethora of advertisers (e.g., Pepsi,

Nike etc.). This symbiotic relationship between the publishers and advertisers is crucial to the

sustainability of the modern internet.

Fundamentally, online display advertising is a matching problem. On one side are publishers

who produce content, and earn revenue by displaying ads to users. And, on the other side are

advertisers who want to display ads to particular users (e.g., based on demographics or market

segments). Unfortunately, the online user population is fragmented across hundreds of thousands of

publishers, making it difficult for advertisers to reach desired customers. On the flip side, given the

vast number of advertisers who want to display ads, it is near impossible for a publisher to maintain

business relationships with multiple advertisers to display their ads. This is where ad networks step

in.

Ad networks bridge this gap by aggregating inventory from publishers (i.e., space for displaying

ads) and filling it with ads from advertisers. Ad networks make it possible for advertisers to reach
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Table 2.1: Key terms used throughout this dissertation.
Term Description
Publisher / Website Websites /Apps that distribute media to consumers (e.g., cnn.com, weather.com)
Advertiser Companies that want to advertise their products to customers (e.g., Nike)
Impression Attention of users (e.g., via page visits)
A&A Advertising and Analytics related domains
Domain Effective 2nd-level name (e.g., doubleclick, openx)
Supply Side Platform (SSP) A&A domain that works with publishers to manage their relationships with multiple ad exchanges
Ad Exchange A&A domain that holds auctions in RTB to solicit bids from DSPs
Demand Side Platform (DSP) A&A domain that places bids on behalf of advertisers
Privacy Footprint Browsing history exposed to A&A domains, including domains, URLs, and visit times

a broad swath of users, while also guaranteeing a steady stream of revenue for publishers. While

there are several revenue models (e.g., attention reward tokens in Brave’s advertising model [178]),

inventory is typically sold using a Cost per Mille (CPM) model, where advertisers purchase blocks

of 1000 impressions (views of ads), or a Cost per Click (CPC) model, where the advertiser pays a

small fee each time their ad is clicked by a user.

Over time, the online display ad ecosystem has become more dynamic and has grown tremen-

dously [58]. This has led advertising networks to adapt and specialize in specific roles. For example,

while some ad networks work closely with publishers to help maximize their revenue, others col-

laborate closely with advertisers to help them reach specific audiences [21]. These ad networks

participate actively in auctions held by ad exchanges (another specialized role) under the Real Time

Bidding model [147]. I collectively refer to companies engaged in analytics and advertising as

A&A companies. (§ 2.3). Mayer et al. presents an accessible introduction to this topic in [123].

Some of the major roles A&A companies have specialized into are:

• Trackers. An A&A company that tracks the activity of users across the web by embedding

“tracking pixels” or other resources in publishers’ web pages.

• Ad Exchanges. Implement Real Time Bidding (RTB) auctions to sell impressions to adver-

tisers.

• Supply Side Platforms (SSPs). Work closely with publishers to manage their relationships

with multiple ad exchanges, to maximize revenue and ensure that all impression inventory is

sold.

• Demand Side Platforms (DSPs). Work closely with advertisers to assess the value of each

impression, optimize bid prices, and implement advertising campaigns.

Note that a single A&A company may play multiple roles in the ecosystem.
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Privacy Digital Footprint. While A&A companies specialize in a variety of roles and busi-

ness models, their overall goal is to serve, or facilitate the serving of, targeted online advertise-

ments. A&A companies achieve this goal by collecting a variety of data about users, including:

personally identifiable information, e.g., IP addresses, usernames on websites, email addresses,

etc. [60, 110, 165]; hardware and software characteristics from users’ devices, potentially to fa-

cilitate fingerprinting [61, 168] and reidentification [5, 103]; demographics and preferences from

consumer surveys; and behavioral signals gleaned from search keywords, social interactions (e.g.,

comments and likes), and browsing history (e.g., the links that users click and the URLs they visit).

My work is focused on this last category of data: browsing history. A&A companies have long

relied on a variety of tracking techniques to collect the domains and URLs visited by users [5, 61,

109,110]. Typically, this data is aggregated and used to infer (1) demographic traits and (2) interest

profiles about users [20, 24, 86, 113, 114], which in turn are used to target ads. Browsing history is

a privacy-sensitive class of data since it may include visits to sensitive destinations, or it may allow

third-parties to infer sensitive attributes about a person (e.g., a health condition, sexual and political

orientation, a desire to quit a job, etc.).

In my work, I refer to the browsing history learned by A&A companies as the privacy digital

footprint of the user. In particular, this consists of the browsing activity on the web observed by the

A&A companies, which includes dates and times of domains and URLs visited by a person. As I

note above, there are other key aspects of user privacy that are out of the scope of this dissertation.

For example, understanding the type of information leaked (e.g., gender, sexual orientation, phone

numbers, etc.) to A&A companies is important to understand, but requires deeper inspection of the

traffic flows under controlled experiments than I have performed. Table 2.1 contains some of the

key terms I use throughout this dissertation.

2.2 Targeted Advertising

Initially, the online display ad industry focused on generic brand ads (e.g., “Enjoy Coca-Cola!”)

or contextual ads (e.g., an ad for Microsoft on StackOverflow). However, the industry quickly

evolved towards behavioral targeted ads that are served to specific users based on their browsing

history, interests, and demographics.

13
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2.2.1 Online Tracking

With the web becoming more personalized, ad networks have adapted over time to show relevant

and more personalized content to end-users. However, in order to provide personalized content, ad

networks must collect information about users (to infer their interests). They do so by tracking users

across the web and observing their browsing history using third-party cookies [33, 107, 109, 168]

and fingerprinting techniques [6,56,61,103,104,133,138,141,182]. Fo example, publishers embed

JavaScript or invisible “tracking pixels” that are hosted by tracking companies into their web pages,

thus any user who visits the publisher also receives third-party cookies from the tracker (I discuss

other tracking mechanisms in greater depth in § 3.2).

Numerous studies have shown that trackers are pervasive across the web [33, 107, 109, 168],

which allows A&A companies to collect users’ browsing history. All major ad exchanges, like

DoubleClick and Rubicon, perform user tracking, but there are also entities like Oracle BlueKai

that just specialize in tracking.

The amount of collected information enables A&A companies to show targeted ads to users.

Depending on the amount of information, the targeting can become very specific. The tracking

information also helps DSPs make bidding decision during RTB, where they bid high or low for

user impressions, depending on the amount of information they have about the user [147].

2.2.2 Retargeted Ads

The methodology proposed in this dissertation uses retargeted ads as a tool to detect information

sharing between A&A companies. Retargeted ads are the most specific form of targeted display ads.

Two conditions must be met for a DSP to serve a retargeted ad to a user u: 1) the DSP must know

that u browsed a specific product on a specific e-commerce site, and 2) the DSP must be able to

uniquely identify u during an RTB auction. If these conditions are met, the DSP can serve u a

highly personalized ad, reminding them to purchase the product from the retailer. Cookie matching

(explained in the next section) is crucial for ad retargeting since it enables DSPs to meet requirement

(2).

2.3 Real Time Bidding

Over time, the mechanisms for selling and buying impressions have become programmatic via

Real Time Bidding (RTB) auctions. In industry parlance, publishers aim to monetize their impres-

14
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User Publisher SSP DSPs AdvertisersAd Exchange

Ads & $$$
2) RTB1) Impression

3) Ad

Figure 2.1: The display advertising ecosystem. Impressions and tracking data flow left-to-right,
while revenue and ads flow right-to-left.

sion inventory (i.e., the attention of people visiting their service) by selling it to advertisers.

2.3.1 Overview

At a high-level, whenever a person visits a publisher, their browser will contact an ad exchange

that serves as the auctioneer. The ad exchange solicits bids for the impression from DSPs, who have

just milliseconds to submit bids on behalf of advertisers. The ad exchange then redirects the user’s

browser to the winning DSP, so they may serve an ad. It is estimated that programmatic advertising

will account for 83% of all US digital display advertising by 2020 [58]. RTB is popular because it

increases fluidity in the advertising market, as well as allowing publishers to increase their revenue

(in theory) by selling their inventory to the highest bidders on-demand. Figure 2.1 shows how

impressions, user tracking data, and revenue flow across various entities involved in RTB auctions.

Although RTB auctions are conceptually simple, they are complex in practice. With respect

to the sell-side, publishers form business relationships with ad exchanges and other Supply-Side

Platforms (SSPs) that facilitate the selling of impressions. Examples of ad exchanges include the

Google Marketing Platform (formerly Doubleclick), Rubicon, and OpenX. With respect to the buy-

side, Demand-Side Platforms (DSPs) represent advertisers by purchasing impressions to implement

their campaigns. Examples of DSPs include Criteo, Quantcast, and MediaMath. Note that many

companies offer seller- and buyer-side products (e.g., Google and Rubicon), complicating their role

in the ecosystem. Furthermore, impressions can be resold after they are won, i.e., the winner of

an RTB auction may be another ad exchange, which will then hold another auction, etc. This can

lead to long chains of transactions that separate the true source of an impression from the DSP that

eventually serves an ad. This complexity enables various forms of advertising fraud, such as domain

spoofing, which is a topic I will return to in chapter 5.
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Figure 2.2: Examples of (a) cookie matching and (b) showing an ad to a user via RTB auctions.
(a) The user visits publisher p1 Ê which includes JavaScript from advertiser a1 Ë. a1’s JavaScript
then cookie matches with exchange e1 by programmatically generating a request that contains both
of their cookies Ì. (b) The user visits publisher p2, which then includes resources from SSP s1 and
exchange e2 Ê–Ì. e2 solicits bids Í and sells the impression to e1 Î Ï, which then holds another
auction Ð, ultimately selling the impression to a1 Ñ Ò.

2.3.2 Cookie Matching

During RTB, an ad exchange holds an auction and DSPs submit bids for user impressions. The

amount of money that a DSP bids on a given impression is intrinsically linked to the amount of

information they have about that user. For example, a DSP is unlikely to bid highly for user u

whom they have never observed before, whereas a DSP may bid heavily for user v whom they have

recently observed browsing high-value websites (e.g., the baby site TheBump.com).

However, the Same Origin Policy (SOP) hinders the ability of DSPs to identify users in ad

auctions. As shown in Figure 2.1, requests are first sent to an SSP which forwards the impression to

an exchange. At this point, the SSP’s and exchange’s cookies are known, but not the DSPs’ cookies.

This leads to a catch-22 situation: a DSP cannot read its cookies until it contacts the user, but it

cannot contact the user without first bidding and winning the auction.

To circumvent SOP restrictions, ad exchanges and DSPs engage in cookie matching (sometimes

called cookie syncing). Figure 2.2(a) illustrates the typical process used by A&A companies to

match cookies. When a user visits a website Ê, JavaScript code from a third-party ad network a1 is

automatically downloaded and executed in the user’s browser Ë. This code may set a cookie in the

user’s browser, but this cookie will be unique to a1, i.e., it will not contain the same unique identifiers

as the cookies set by any other A&A companies. Furthermore, as mentioned above, SOP restrictions
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prevent a1’s code from reading the cookies set by any other domain. To facilitate bidding in future

RTB auctions, a1 syncs their identifiers with those set by an ad exchange like e1. As shown in the

figure, a1’s JavaScript accomplishes this by programmatically causing the browser to send a request

(via HTTP redirect) to e1 Ì. The JavaScript includes a1’s cookie in the request, and the browser

automatically adds a copy of e1’s cookie, thus allowing e1 to create a match between its cookie and

a1’s1. In the future, if a1 participates in an auction held by e1, it will be able to identify the user

using a previously matched cookie. Note that some ad exchanges (including DoubleClick) send

cryptographically hashed cookies to their partners, which prevents the ad network’s true cookies

from leaking to third-parties.

2.3.3 Advertisement Served via RTB

Figure 2.2(b) shows an example of how an ad may be shown on publisher p2 using RTB auc-

tions. When a user visits p2 Ê, JavaScript code is automatically downloaded and executed either

from a Supply Side Platform (SSP) Ë or an ad exchange. Eventually the impression arrives at the

auction held by ad exchange e2 Ì, and e2 solicits bids from DSPs Í. Note that all participants in

the auction observe the impression; however, because only e2’s cookie is available at this point,

auction participants that have not matched cookies with e2 will not be able to identify the user.

The process of filling an impression may continue even after an RTB auction is won, because the

winner may be yet another ad exchange or ad network. As shown in Figure 2.2(b), the impression

is purchased from e2 by e1 Î Ï, who then holds another auction Ð and ultimately sells to a1

(the advertiser from the cookie matching example) Ñ Ò. Ad exchanges and DSPs routinely match

cookies with each other to facilitate the flow of impression inventory between markets.

1Cookie matching can happen in both directions, i.e., from a1 to e1 and from e1 to a1.
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Chapter 3

Related Work

In this chapter, I present the related work that has motivated and informed this dissertation. I

begin by providing an overview of general studies on the display advertising ecosystem. Then, I sur-

vey the related work documenting the pervasiveness of online tracking, tracking mechanisms used

by A&A companies, user perceptions regarding online tracking, and ongoing efforts to make the

ecosystem more transparent. I conclude this chapter by discussing related work that has specifically

examined RTB and cookie matching, and motivate the need for this dissertation by highlighting

their limitations.

3.1 The Online Advertising Ecosystem

Numerous studies have chronicled the online advertising ecosystem, which is composed of com-

panies that track users, serve ads, act as platforms between publishers and advertisers, or all of the

above. Mayer et al. presents an accessible introduction to this topic in [123].

Guha et al. [86] were the first to develop a controlled and systematic methodology based on

trained personas to measure online ads on the web. Their work has been very influential in sub-

sequent studies, including this dissertation. Barford et al. [20] take a much broader look at the

adscape to determine who the major ad networks are, what fraction of ads are targeted, and what

user characteristics drive targeting. Carrascosa et al. [34] take an even finer-grained look at targeted

ads by training personas that embody specific interest profiles (e.g., cooking, sports), and find that

advertisers routinely target users based on sensitive attributes (e.g., religion).

In chapter 4, I make use of personas along with retargeted ads to detect information sharing

between A&A companies. None of these studies mentioned above examine retargeted ads; Carras-
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cosa et al. specifically excluded retargets from their analysis [34].

There has been work in the space of the mobile ad ecosystem as well. Rodriguez et al. [189]

were one of the first to measure the ad ecosystem on mobile devices. More recently, Razaghpanah et

al. [162] presented insights into the mobile advertising and tracking ecosystem. Using real-world

mobile traffic data, they discovered 2,121 A&A services and analyze their business relationships

with one another. Although my dissertation does not focus on the mobile ad space, the proposed

methodologies can be extended to other platforms (see chapter 7).

Researchers have found that the information and revenue in the ad ecosystem are skewed to-

wards top players. Gill et al. [74] used browsing traces to study the economy of online advertising

and discovered that the revenues are skewed towards the largest trackers (primarily Google). More

recently, Cahn et al. [33] performed a broad survey of cookie characteristics across the web and

found that <1% of trackers can aggregate information across 75% of websites in the Alexa Top-

10K. Englehardt et al. [61] discovered similar results in their analysis of Alexa Top-1M websites.

In particular, they found that 12 out of the top 20 third-party domains belong to Google. Falahraste-

gar et al. [64] looked at third-party prevalence across geographic regions.

Researchers have also studied malicious and bad practices in the advertising ecosystem. Zarras et

al. [198] studied malicious ad campaigns and the ad networks associated with them, whereas in my

prior work I found that some advertisers were not following industry guidelines and were serving

poor quality ads [23].

3.2 Online Tracking

To facilitate ad targeting, participants in the ad ecosystem must extensively track users. In this

section, I survey the related work that identifies tracking mechanisms employed by A&A domains

and proposes solutions to combat online tracking.

3.2.1 Tracking Mechanisms

Krishnamurthy et al. were one of the first to bring attention to the pervasiveness of trackers and

their privacy implications for users [109], and since then they have been cataloging the spread of

trackers and assessing the ensuing privacy implications [106–108]. Recently, Lerner et al. [117]

examined the evolution of third-party trackers from 1996-2016.
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Ad networks have evolved their tracking techniques over time, sometimes going to extraordinary

lengths to collect and retain user information. Roesner et al. [168] developed a comprehensive tax-

onomy of different tracking mechanisms that store state in users’ browsers (e.g., cookies, HTML5

LocalStorage, and Flash LSOs), as well as strategies to block them. Li et al. [118] show that most

tracking cookies can be automatically detected using simple machine learning methods.

Although users can try to evade trackers by clearing their cookies or using private/incognito

browsing modes, companies have fought back using techniques like Evercookies and fingerprinting.

Evercookies store the tracker’s state in many places within the browser (e.g., FlashLSOs, Etags,

etc.), thus facilitating the regeneration of tracking identifiers even if users delete their cookies [18,

103, 125, 179].

Fingerprinting involves generating a unique ID for a user based on the characteristics of their

browser [56, 133, 138], browsing history [146], browser extensions [182] and computer (e.g., the

HTML5 canvas [134]). Recently, Englehardt et al. [61] found trackers fingerprinting users via the

JavaScript Audio and Battery Status APIs. Several studies have found trackers in-the-wild

that use fingerprinting techniques [6, 61, 104, 141]; Nikiforakis et al. [140] proposed techniques to

mitigate fingerprinting by carefully and intentionally adding more entropy to users’ browsers.

Researchers have also studied the state of tracking and its privacy implications on mobile de-

vices [27, 57, 82, 162, 165, 189]. They have noticed that tracking is ubiquitous on mobile devices

and that apps use embedded sensors (e.g., camera, microphone, GPS) to extensively track users.

Additionally, there have been two prominent studies on cross-device tracking. Brookman et al. [30]

from the Federal Trade Commission (FTC) surveyed 100 popular websites to study the potential for

cross-device tracking, although they did not measure the actual prevalence of cross-device tracking.

In contrast, Zimmeck et al. [201] found empirical evidence of cross-device tracking in their survey

of 126 internet users.

3.2.2 Users’ Perceptions of Tracking

Various surveys have found that people have concerns about the amount and type of information

collected about them. McDonald et al. reported that 64% of the participants they surveyed found

targeted advertising to be invasive [124]. Similarly, Turow et al. found that the majority of Amer-

icans feel that they do not have a meaningful choice with respect to the collection and use of their

data by third-parties; thus, respondents were resigned to giving up their data [187]. Peoples’ feel-

ings about lack of agency may be rooted, in part, by widespread misconceptions about how targeted
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advertising systems are implemented [11, 121]. Balebako et al. discussed user concerns regarding

behavioral advertising and evaluated the effectiveness of privacy tools as counter mechanism [19].

Studies have found that a variety of factors influence people’s perceptions of tracking and on-

line advertising. Ur et al. reported that people found targeted advertising to be both useful and

privacy-invasive depending on how much they trusted the advertising company [188]. Similarly,

Leon et al. surveyed 2,912 participants and found that they were willing to share information with

advertisers if they were given more control over what was shared and with whom [116]. Like Ur et

al., O’Donnell et al. surveyed 256 participants and found targeted advertising to be useful under

a variety of circumstances (e.g., ads around major life events) [143]. However, Plane et al. found

that people were very concerned when ad targeting resulted in discrimination (e.g., by targeting

racial attributes) [156]. These findings highlight the complexity of peoples’ relationship with target

advertising, i.e., how trust, context, content, control, and effect commingle to shape perceptions of

individual advertisements and the industry as a whole.

Dolin et al. surveyed people to understand how ad explanations (small disclosures near adver-

tisements that provide insight into how the ad was targeted) impact peoples’ opinions of targeted

advertising. They found that peoples’ comfort level varied based on the explanation they were given

for how the targeted interest was inferred [53]. They also report that the accuracy of the inferred

interests was strongly, positively correlated with user comfort, regardless of the sensitivity of the

interest. In my prior work, I shed light on the accuracy of inferred interests [24]. I find that user in-

terest profiles contain noisy data and low-relevance interests. In particular, the 220 users I surveyed

found the majority of their interests as not relevant (only 27% strongly relevant), and don’t consider

ads targeted to low-relevance interests to be useful.

3.2.3 Blocking & Anti-Blocking

On one hand, tracking has enabled advertisers to show relevant ads to users, while on the other,

it has raised concerns among users about the amounts and types of information being collected

about them [124,187]. To avoid pervasive tracking, users are increasingly adopting tools that block

trackers and ads [122, 159]. There has also been a development towards whitelisting “acceptable”

ads [190]. Merzdovnik et al. [127] and Iqbal et al. [99] performed large scale measurements of

blocking extensions and techniques to determine which are most effective.

Concerned with the increased adoption of ad and tracker blocking tools, advertisers have started

developing techniques to counter them. Merzdovnik et al. [127] critically examined the effective-
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ness of tracker blocking tools; in contrast, Nithyanand et al. [142] studied advertisers’ efforts to

counter ad blockers. Mughees et al. [137] examined the prevalence of anti-ad blockers in the wild.

Recently, advertisers were reported by user communities for displaying ads (even with ad block-

ers installed) through WebSockets and WebRTC [91,166]. Similarly, WebRTC has also been known

to reveal user IP addresses [61, 164]. Snyder et al. [176] performed a browser feature usage survey

and showed that ad and tracking blocking extensions do not block all standards equally, with Web-

Sockets being blocked 65% of the times. Franken et al. [71] reported that blocking extensions

could sometimes be bypassed using WebSockets. They found that the extention developers made

the mistake of using “http://*, https://*” filters instead of “ws://*, wss://*” for

the onBeforeRequest event, which prevents the interception of WebSocket connections. In

my prior work [22], I shed light on A&A companies that were circumventing ad blockers through

WebSockets to track users and display ads.

The research community has proposed a variety of mechanisms to stop online tracking that

goes beyond blacklists of domains and URLs. Li et al. [118] and Ikram et al. [96] used machine

learning to identify trackers; Papaodyssefs et al. [150] proposed the use of private cookies to mitigate

tracking; Nikiforakis et al. [140] added entropy to the browser to combat fingerprinting. More

recently, Zhu et al. [200] and Iqbal et al. [100] proposed machine learning based approaches to

automatically block trackers and advertisements. However, despite these efforts, third-party trackers

are still pervasive and pose real privacy issues to users [127].

3.2.4 Transparency

In an effort to make the advertising ecosystem more transparent, some advertising companies

(e.g., Google, Facebook) have built transparency tools called Ad Preference Managers (APMs) to

enable users to see, and in some cases modify, what information has been inferred about them.

However, studies have highlighted certain issues with these tools: they lack coverage [14, 194],

exclude sensitive user attributes [48], and infer noisy and irrelevant interests [24, 50, 186].

Several studies specifically focus on tracking data collected by Google, since their trackers are

more pervasive than any others on the web [33, 74]. Alarmingly, two studies have found that

Google’s Ad Preferences Manager, which is supposed to allow users to see and adjust how they

are being targeted for ads, actually hides sensitive information from users [48, 194]. This finding is

troubling given that several studies rely on data from the Ad Preferences Manager as their source

of ground-truth [20, 35, 86]. To combat this lack of transparency, Lecuyer et al. [113, 114] have
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built systems that rely on controlled experiments and statistical analysis to infer the profiles that

Google constructs about users. Castelluccia et al. [35] go further by showing that adversaries can

infer users’ profiles by passively observing the targeted ads they are shown by Google.

3.3 Real Time Bidding and Cookie Matching

As I note in chapter 2, A&A companies have to perform cookie matching to be able to participate

in RTB auctions. Although ad networks have been transitioning to RTB auctions since the mid-

2000s, there have been only a handful of empirical studies that have examined cookie matching.

Acar et al. [5] found that hundreds of domains passed unique identifiers to each other while

crawling websites in the Alexa Top-3K. Falahrastegar et al. [65] examine the clusters of domains

that all share unique, matched cookies using crowdsourced browsing data. Additionally, Ghosh et al.

use game theory to model the incentives for ad exchanges to match cookies with their competitors,

but they provide no empirical measurements of cookie matching [72].

Olejnik et al. [147] noticed that ad auctions were leaking the winning bid prices for impressions,

thus enabling a fascinating behind-the-scenes look at RTB auctions. In addition to examining the

monetary aspects of auctions, Olejnik et al. found 125 ad exchanges using cookie matching. Pa-

padopoulos et al. [149] ran their own ad campaigns to develop a model that can collect bid prices

even when they are encrypted.

Furthermore, some studies have also examined retargeted ads, which are directly facilitated by

cookie matching and RTB. Liu et al. [119] identified and measured retargeted ads served by Dou-

bleClick by relying on unique AdSense tags that were embedded in ad URLs. Olejnik et al. [147]

crawled specific e-commerce sites to elicit retargeted ads from those retailers and observed that re-

targeted ads could cost advertisers over $1 per impression (an enormous sum, considering contextual

ads sell for <$0.01).

Limitations. Although prior studies provide insights into the widespread practice of cookie

matching, they have significant methodological limitations, which prevent them from observing all

forms of information sharing between A&A companies. Specifically:

1. Resource Attribution: These studies cannot determine the precise information flows be-

tween ad exchanges, i.e., which parties are sending or receiving information [5]. The funda-

mental problem is that HTTP requests, and even the DOM tree itself, do not reveal the true

sources of resource inclusions in the presence of dynamic code (JavaScript, Flash, etc.) from

23



CHAPTER 3. RELATED WORK

third-parties. For example, a script from t1.com embedded in pub.com may share iden-

tifiers with t2.com using dynamic AJAX, but the Referer appears to be pub.com, thus

potentially hiding t1’s role as the source of the flow (see § 4.1.2).

2. Obfuscation: These studies rely on locating unique user IDs that are transmitted to multiple

third-party domains [5, 65, 147]. Unfortunately, this will miss cases where exchanges send

permuted or obfuscated IDs to their partners. Indeed, DoubleClick is known to do this [2].

The two studies that have examined the behavior of DoubleClick have done so by relying on

specific cookie keys and URL parameters [119, 147]. This is not a robust way of performing

detection since in the future DoubleClick can change the parameter names.

3. Server-Side Matching: Since these methods rely on analyzing HTTP content, they will miss

information sharing that happens on the server-side (without ever going through the user’s

browser). For example, two ad networks that belong to the same parent company can share

user tracking data with each other without cookie matching. In § 4.3.1.2, I highlight that

Google services share identifiers on the server-side.

In general, these limitations stem from a reliance on analyzing specific mechanisms for cookie

matching. In this dissertation, one of my primary goals is to develop a methodology for detect-

ing cookie matching (and thus, information sharing) that is agnostic to the underlying matching

mechanism and instead relies on the fundamental semantics of how ad exchanges work under RTB.
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Chapter 4

Tracing Information Flows Between

A&A companies Using Retargeted Ads

Real Time Bidding (RTB) is quickly becoming the dominant mechanism for buying and selling

advertising inventory from publishers [1, 4]. The rise of RTB has forced advertising companies

to collaborate more closely with one another. To be able to participate in RTB auctions, A&A

domains routinely share user identifiers with each via cookie matching, which is a pre-requisite for

RTB participation. Despite user concerns about their digital footprint, we currently lack the tools to

fully understand how much and how often information is being shared between A&A domains.

Although prior empirical works have relied on heuristics that look for specific strings in HTTP

messages to identify flows between ad networks [5,65,147], these heuristics are brittle in the face of

obfuscation: for example, DoubleClick cryptographically hashes their cookies before sending them

to other ad networks [2]. More fundamentally, analysis of client-side HTTP messages is insufficient

to detect server-side information flows between A&A domains.

In this chapter, I develop a methodology that can detect client- and server-side flows of infor-

mation between arbitrary A&A domains using retargeted ads. Retargeted ads are the most specific

form of behavioral ads, where a user is targeted with ads related to the exact products she has previ-

ously browsed (see § 2.3). For example, Bob visits nike.com and browses for running shoes but

decides not to purchase them. Bob later visits cnn.com and sees an ad for the exact same running

shoes from Nike.

The key insight is to leverage retargeted ads as a mechanism for identifying information flows.

This is possible because the strict conditions that must be met for a retarget to be served allow us
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to infer the precise flow of tracking information that facilitated the serving of the ad. Intuitively,

this methodology works because it relies on the semantics of how exchanges serve ads, rather than

focusing on specific cookie matching mechanisms.

To demonstrate the efficacy of this methodology, I conduct extensive experiments on real data.

I train 90 personas by visiting popular e-commerce sites, and then crawl major publishers to gather

retargeted ads [20, 34]. My crawler is an instrumented version of Chromium that records the in-

clusion chain for every resource it encounters [17], including 35,448 chains associated with 5,102

unique retargeted ads. I use carefully designed pattern matching rules to categorize each of these

chains, which reveal 1) the pair of A&A domains that shared information in order to serve the re-

target, and 2) the mechanism used to share the data (e.g., cookie matching, server-side matching,

etc.).

In summary, in this chapter I make the following contributions:

• I present a novel methodology for identifying information flows between A&A domains that

is content- and platform-agnostic. This methodology allows us to identify four different cat-

egories of information sharing between A&A domains, of which cookie matching is one.

• Using crawled data, I show that the heuristics used by prior works to analyze cookie matching

are unable to identify 31% of A&A domain pairs that share data.

• Although it is known that Google’s privacy policy allows it to share data between its ser-

vices [79], I provide the first empirical evidence that Google uses this capability to serve

retargeted ads.

• Using graph analysis, I show how the data collected in this study can be used to automati-

cally infer the roles played by different A&A companies (e.g., Supply-Side and Demand-Side

Platforms). These results expand upon prior work [77] and facilitate a more nuanced under-

standing of the online ad ecosystem.

4.1 Methodology

In this chapter, my primary goal is to develop a methodology for detecting flows of user data

between arbitrary A&A domains. This includes client-side flows (i.e., cookie matching), as well

as server-side flows. In this section, I discuss the methods and data I use to meet this goal. First,

I briefly sketch my high-level approach and discuss key enabling insights. Second, I introduce the

instrumented version of Chromium that I use during my crawls. Third, I explain how I designed
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and trained shopper personas that view products on the web, and finally I detail how I collected ads

using these trained personas.

4.1.1 Insights and Approach

Although prior work has examined information flow between A&A companies, these studies

are limited to specific types of cookie matching that follow well-defined patterns (see § 3.3). To

study arbitrary information flows in a mechanism-agnostic way, I need a fundamentally different

methodology.

I solve this problem by relying on a key insight: in most cases, if a user is served a retargeted ad,

this proves that ad exchanges shared information about the user (see § 4.3.1.1). To understand this

insight, consider the two pre-conditions that must be met for user u to be served a retarget ad for

shop by DSP d. First, either d directly observed u visiting shop, or d must be told this information

by SSP s. If this condition is not met, then d would not pay the premium price necessary to serve

u a retarget. Second, if the retarget was served from an ad auction, SSP s and d must be sharing

information about u. If this condition is not met, then d would have no way of identifying u as the

source of the impression (see § 2.3).

In this study, I leverage this observation to reliably infer information flows between SSPs / ex-

changes and DSPs, regardless of whether the flow occurs client- or server-side. The high-level

methodology is quite intuitive: have a clean browser visit specific e-commerce sites, then crawl

publishers and gather ads. If I observe retargeted ads, I know that ad exchanges tracking the user on

the shopper-side are sharing information with exchanges serving ads on the publisher-side. Specif-

ically, this methodology uses the following steps:

• § 4.1.2: I use an instrumented version of Chromium to record inclusion chains for all re-

sources encountered during my crawls [17]. These chains record the precise origins of all

resource requests, even when the requests are generated dynamically by JavaScript or Flash.

I use these chains in § 4.3 to categorize information flows between ad exchanges.

• § 4.1.3: To elicit retargeted ads from ad exchanges, I design personas (to borrow terminology

from [20] and [34]) that visit specific e-commerce sites. These sites are carefully chosen to

cover different types of products and include a wide variety of common trackers.

• § 4.1.4: To collect ads, each created persona crawl 150 publishers from the Alexa Top-1K

list.
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(a) (b)

Web Page: a.com/index.html

<html>
    <head></head>
    <body>
        <img src=”img.png” />
        <div>
            <script src=”animate.js”></script>
            <img src=”cats.gif” />
        </div>
        <script src=”b.com/adlib.js”></script>
        <iframe src=”c.net/adbox.html”>
            <html>
                <head></head>
                <body>
                    <script src=”code.js”></script>
                    <object data=”d.org/flash.swf”>
                    </object>
                </body>
            </html>
        </iframe>
    </body>
</html>

a.com/index.html

a.com/img.png

a.com/animate.js

a.com/cats.gif

b.com/adlib.js

c.net/adbox.html

c.net/code.js

d.org/flash.swf

Figure 4.1: (a) DOM Tree, and (b) Inclusion Tree.

• § 4.2: I leverage well-known filtering techniques and crowdsourcing to identify retargeted ads

from the corpus of 571,636 unique crawled images.

4.1.2 Instrumenting Chromium

Before I can begin crawling, I first need a browser that is capable of recording detailed informa-

tion about the provenance of third-party resource inclusions in web pages. Recall that prior work on

cookie matching was unable to determine which ad exchanges were syncing cookies in many cases

because the analysis relied solely on the contents of HTTP requests [5, 65] (see § 3.3). The funda-

mental problem is that HTTP requests, and even the DOM tree itself, do not reveal the true sources

of resource inclusions in the presence of dynamic code (JavaScript, Flash, etc.) from third-parties.

To understand this problem, consider the example DOM tree for a.com/index.html in

Figure 4.1(a). Based on the DOM, we might conclude that the chain a → c → d captures the

sequence of inclusions leading from the root of the page to the Flash object from d.org.

However, the direct use of a web page’s DOM is misleading because the DOM does not reliably

record the inclusion relationships between resources in a page. This is due to the ability of JavaScript

to manipulate the DOM at run-time, i.e., by adding new inclusions dynamically. As such, while the

DOM is a faithful syntactic description of a webpage at a given point in time, it cannot be relied

upon to extract relationships between included resources. Furthermore, analysis of HTTP request
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Figure 4.3: Unique A&A domains contacted by
each A&A domain as we crawl more pages.

headers does not solve this problem, since the Referer is set to the first-party domain even when

inclusions are dynamically added by third-party scripts.

To solve this issue, I make use of a heavily instrumented version of Chromium that produces

inclusion trees directly from Chromium’s resource loading code [17]. Inclusion trees capture the

semantic inclusion structure of resources in a web page (i.e., which objects cause other objects to be

loaded), unlike DOM trees which only capture syntactic structures. The instrumented Chromium ac-

curately captures relationships between elements, regardless of where they are located (e.g., within

a single page or across frames) or how the relevant code executes (e.g., via an inline <script>,

eval(), or an event handler). More details about the inclusion trees and how the Chromium binary

is instrumented can be found in [17].

Figure 4.1(b) shows the inclusion tree corresponding to the DOM tree in Figure 4.1(a). From

the inclusion tree, we can see that the true inclusion chain leading to the Flash object is a → b →
c→ c→ d, since the iframe and the Flash are dynamically included by JavaScript from b.com

and c.net, respectively.

Using inclusion chains, I can precisely analyze the provenance of third-party resources included

in web pages. In § 4.3, I use this capability to distinguish client-side flows of information between

A&A domains (i.e., cookie matching) from server-side flows.

4.1.3 Creating Shopper Personas

Now that I have a robust crawling tool, the next step in the methodology is designing shopper

personas. Each persona visits products on specific e-commerce sites, in the hope of seeing retargeted

ads when I crawl publishers.
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Since we do not know a priori which e-commerce sites are conducting retargeted ad campaigns,

these personas must cover a wide variety of sites. To facilitate this, I leverage the hierarchical

categorization of e-commerce sites maintained by Alexa1. Although Alexa’s hierarchy has 847 total

categories, there is a significant overlap between categories. I manually selected 90 categories to

use for these personas so that they have minimal overlap, as well as cover major e-commerce sites

(e.g., Amazon and Walmart) and shopping categories (e.g., sports, jewelry, and baby products).

For each persona, I included the top 10 e-commerce sites in the corresponding Alexa category.

In total, the personas cover 738 unique websites. Furthermore, I manually selected 10 product URLs

on each of these websites. Thus, each persona visits 100 product URLs across 10 e-commerce sites.

Sanity Checking. The final step in designing these personas is ensuring that the e-commerce

sites are embedded with a representative set of trackers. If they are not, then we will not be able to

collect targeted ads when we crawl publishers.

Figure 4.2 plots the overlap between the trackers we observe on the Alexa Top-5K websites,

compared to the top x trackers (i.e., most frequent) we observe on the e-commerce sites. We see

that 84% of the top 100 e-commerce trackers are also present in the trackers on Alexa Top-5K

sites2. These results demonstrate that our shopping personas will be seen by the vast majority of

major trackers when they visit our 738 e-commerce sites.

4.1.4 Collecting Ads

In addition to selecting e-commerce sites for our personas, I must also select publishers to crawl

for ads. To this end, I manually select 150 publishers by examining the Alexa Top-1K websites and

filtering out those which do not display ads, are non-English, are pornographic, or require logging-

in to view the content (e.g., Facebook). I randomly selected 15 URLs on each publisher to crawl

(including the homepage).

At this point, I am ready to crawl ads. I initialized 91 copies of our instrumented Chromium

binary: 90 corresponding to our shopper personas, and one which serves as a control. During

each round of crawling, the personas visit their associated e-commerce sites, then visit the 2,250

publisher URLs (150 publishers ∗ 15 pages per publisher). The control only visits the publisher

URLs, i.e., it does not browse e-commerce sites, and therefore should never be served retargeted

ads. The crawlers are executed in tandem, so they visit the publishers URLs in the same order at the

1http://www.alexa.com/topsites/category/Top/Shopping
2I separately crawled the resources included by the Alexa Top-5K websites in January 2015. For each website, I visited 6 pages and

recorded all the requested resources.
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Figure 4.4: Average number of images per persona, with standard deviation error bars.

same time. I hard-coded a 1-minute delay between subsequent page loads to avoid overloading any

servers, and to allow time for the crawler to automatically scroll to the bottom of each page. Each

round takes 40 hours to complete.

I conducted nine rounds of crawling between December 4 to 19, 2015. I stopped after 9 rounds

because I observed that I only gathered 4% new images during the ninth round. The crawlers

recorded inclusion trees, HTTP request and response headers, cookies, and images from all pages.

At no point did the crawlers click on ads, since this can be construed as click-fraud (i.e., advertisers

often have to pay each time their ads are clicked, and thus automated clicks drain their advertising

budget). All crawls were done from Northeastern University’s IP addresses in Boston.

4.2 Image Labeling

Using the methodology in § 4.1.4, I collected 571,636 unique images in total. However, only a

small subset are retargeted ads, which are of interest. In this section, I discuss the steps I used to

filter down our image set and isolate retargeted ads, beginning with standard filters used by prior

work [20, 118], and ending with crowdsourced image labeling.

4.2.1 Basic Filtering

Prior work has used a number of techniques to identify ad images from crawled data. First, I

leverage the EasyList filter [54]3 provided by AdBlock Plus [7] to detect images that are likely to be

ads [20, 118]. In our case, I look at the inclusion chain for each image and filter out those in which

3https://easylist-downloads.adblockplus.org/easylist.txt
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none of the URLs in the chain are a hit against EasyList. This reduces the set to 93,726 unique

images.

Next, I filter out all images with dimensions < 50× 50 pixels. These images are too small to be

ads; most are 1× 1 tracking pixels.

The final filter relies on a unique property of retargeted ads: they should only appear to personas

that visit a specific e-commerce site. In other words, an ad that was shown to our control account

(which visits no e-commerce sites) is either untargeted or contextually targeted and can be discarded.

Furthermore, any ad shown to >1 persona may be behaviorally targeted, but it cannot be a retarget,

and is therefore filtered out4.

Figure 4.4 shows the average number of images remaining per persona after applying each filter.

After applying all four filters, we are left with 31,850 ad images.

4.2.2 Identifying Targeted & Retargeted Ads

At this point, I do not know which of the ad images are retargets. Prior work has identified

retargets by looking for specific URL parameters associated with them, however, this technique is

only able to identify a subset of retargets served by DoubleClick [119]. Since my goal is to be

mechanism- and platform-agnostic, I must use a more generalizable method to identify retargeted

ads.

Crowdsourcing. Given a large number of ads in the corpus, I decided to crowdsource labels

from workers on Amazon Mechanical Turk (AMT) [136]. I constructed Human Intelligence Tasks

(HITs) that ask workers to label 30 ads, 27 of which are unlabeled, and 3 of which are known to be

retargeted ads and serve as controls (I manually identified 1,016 retargets from our corpus of 31,850

to serve as these controls).

Figure 4.5(a) shows a screenshot of a HIT. On the right is an ad image, and on the left I ask the

worker two questions:

1. Does the image belong to one of the following categories (with “None of the above” being

one option)?

2. Does the image say it came from one of the following websites (with “No” being one option)?

The purpose of question (1) is to isolate behavioral and retargeted ads from contextual and

untargeted ads (e.g., Figure 4.5(c), which was served to the Music persona). The list for question

4Several of our personas have retailers in common, which I account for when filtering ads.
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Figure 4.5: Screenshot of our AMT HIT, and examples of different types of ads.

(1) is populated with the shopping categories associated with the persona that crawled the ad. For

example, as shown in Figure 4.5(a), the category list includes “shopping_jewelry_diamonds” for

ads shown to our Diamond Jewelry persona. In most cases, this list contains exactly one entry,

although there are rare cases where up to 3 categories are present in the list.

If the worker does not select “None” for question (1), then they are shown question (2). Ques-

tion (2) is designed to separate retargets from behaviorally targeted ads. The list of websites for

question (2) is populated with the e-commerce sites visited by the persona that crawled the ad. For

example, in Figure 4.5(a), the ad clearly says “Adiamor”, and one of the sites visited by the persona

is adiamor.com; thus, this image is likely to be a retargeted ad. Contrast this with Figure 4.5(b),

which was served to our Jewelry persona, but does not include any text; in this case, it is unclear if

the ad is a behavioral target or a retarget.

Quality Control. I apply four widely used techniques to maintain and validate the quality of our
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crowdsourced image labels [88, 177, 191]. First, I restrict our HITs to workers that have completed

≥50 HITs and have an approval rating of≥95%. Second, I restrict our HITs to workers living in the

US since our ads were collected from US websites. Third, I reject a HIT if the worker mislabels ≥2

of the control images (i.e., known retargeted ads); this prevents workers from being able to simply

answer “None” to all questions. I resubmitted rejected HITs for completion by another worker.

Overall, the workers correctly labeled 87% of the control images. Fourth and finally, I obtain two

labels on each unlabeled image by different workers. For 92.4% of images, both labels match, so I

accept them. I manually labeled the divergent images myself to break the tie.

Finding More Retargets. The workers from AMT successfully identified 1,359 retargeted ads.

However, it is possible that they failed to identify some retargets, i.e., there are false negatives. This

may occur in cases like Figure 4.5(b): it is not clear if this ad was served as a behavioral target based

on the persona’s interest in jewelry, or as a retarget for a specific jeweler.

To mitigate this issue, I manually examined all 7,563 images that were labeled as behavioral

ads by the workers. In addition to the images themselves, I also looked at the inclusion chains for

each image. In many cases, the URLs reveal that specific e-commerce sites visited by our personas

hosted the images, indicating that the ads are retargeted. For example, Figure 4.5(b) is actually

part of a retargeted ad from fossil.com. The manual analysis uncovered an additional 3,743

retargeted ads.

These results suggest that the number of false negatives from the crowdsourcing task could be

dramatically reduced by showing the URLs associated with each ad image to the workers. However,

note that adding this information to the HIT will change the dynamics of the task: false negatives

may go down but the effort (and therefore the cost) of each HIT will go up. This stems from the

additional time it will take each worker to review the ad URLs for relevant keywords.

In § 4.3.2, I compare the datasets labeled by the workers and by myself. Interestingly, although

my dataset contains a greater magnitude of retargeted ads versus the worker’s dataset, it does not

improve diversity, i.e., the smaller dataset identifies 96% of the top 25 most frequent ad networks

in the larger dataset. These networks are responsible for the vast majority of retargeted ads and

inclusion chains in our dataset.

Final Results. Overall, I submitted 1,142 HITs to AMT. Workers were paid $0.18 per HIT,

bringing the total cost of labeling to $415. I did not collect any personal information from workers.

In total, I and the workers from AMT labeled 31,850 images, of which 7,563 are behaviorally tar-

geted ads and 5,102 are retargeted ads. These retargets advertise 281 distinct e-commerce websites
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(38% of all e-commerce sites).

4.2.3 Limitations

With any labeling task of this size and complexity, it is possible that there are false positives

and negatives. Unfortunately, I cannot bound these quantities, since I do not have ground-truth in-

formation about known retargeted ad campaigns, nor is there a reliable mechanism to automatically

detect retargets (e.g., based on special URL parameters, etc.).

In practice, the effect of false positives is that I will erroneously classify pairs of A&A domains

as sharing information. I take measures to mitigate false positives by running a controlled crawl and

removing images that appear in multiple personas (see § 4.2.1), but false positives can still occur.

However, as I show in § 4.3, the results of my classifier are extremely consistent, suggesting that

there are few false positives in our dataset.

False negatives have the opposite effect: I may miss pairs of A&A domains that are sharing

information. Fortunately, the practical impact of false negatives is low, since I only need to correctly

identify a single retargeted ad to infer that a given pair of A&A domains are sharing information.

Given the size of our labeled dataset (5,102 retargets), it is likely that I have at least one retarget for

all major pairs of collaborating A&A domains.

4.3 Analysis

In this section, I use the 5,102 retargeted ads uncovered in § 4.2, coupled with their associated

inclusion chains (see § 4.1.2), to analyze the information flows between A&A domains. Specifically,

I seek to answer two fundamental questions: who is sharing user data, and how does the sharing take

place (e.g., client-side via cookie matching, or server-side)?

I begin by categorizing all of the retargeted ads and their associated inclusion chains into one

of four classes, which correspond to different mechanisms for sharing user data. Next, I examine

specific pairs of ad exchanges that share data and compare our detection approach to those used in

prior works to identify cookie matching [5,65,119,147]. I find that prior work may be missing 31%

of collaborating A&A domains. Finally, I construct a graph that captures A&A domains and the

relationships between them and use it to reveal nuanced characteristics of the roles that different

exchanges play in the ad ecosystem.
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Figure 4.6: Regex-like rules we use to identify different types of ad exchange interactions. shop
and pub refer to chains that begin at an e-commerce site or publisher, respectively. d is the DSP
that serves a retarget; s is the predecessor to d in the publisher-side chain, and is most likely an SSP
holding an auction. Dot star (.∗) matches any domains zero or more times.

4.3.1 Information Flow Categorization

I begin the analysis by answering two basic questions: for a given retargeted ad, was user

information shared between A&A domains, and if so, how? To answer these questions, I categorize

the 35,448 publisher-side inclusion chains corresponding to the 5,102 retargeted ads in our data.

Note that 1) we observe some retargeted ads multiple times, resulting in multiple chains, and 2) the

chains for a given unique ad may not be identical.

I place publisher-side chains into one of the four categories, each of which corresponds to a

specific information-sharing mechanism (or lack thereof). To determine the category of a given

chain, I match it against carefully designed, regular expression-like rules. Figure 4.6 shows the

pattern matching rules that I use to identify chains in each category. These rules are mutually

exclusive, i.e., a chain will match one or none of them.

Terminology. Before I explain each classification in detail, I first introduce shared terminol-

ogy that will be used throughout this section. Each retargeted ad was served to our persona via

a publisher-side chain. pub is the domain of the publisher at the root of the chain, while d is the
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domain at the end of the chain that served the ad. Typically, d is a DSP. If the retarget was served

via an auction, then an SSP s must immediately precede d in the publisher-side chain.

Each retarget advertises a particular e-commerce site. shop is the domain of the e-commerce

site corresponding to a particular retargeted ad. To categorize a given publisher-side chain, we must

also consider the corresponding shopper-side chains rooted at shop.

4.3.1.1 Categorization Rules

Case 1: Direct Matches. The first chain type that I define are direct matches. Direct matches

are the simplest type of chains that can be used to serve a retargeted ad. As shown in Figure 4.6, for

us to categorize a publisher-side chain as a direct match, it must be exactly length two, with a direct

resource inclusion request from pub to d. d receives any cookies they have stored on the persona

inside this request, and thus it is trivial for d to identify our persona.

On the shopper-side, the only requirement is that d observed our persona browsing shop. If d

does not observe our persona at shop, then d would not serve the persona a retargeted ad for shop.

d is able to set a cookie on our persona, allowing d to re-identify the persona in the future.

I refer to direct matching chains as “trivial” because it is obvious how d is able to track our

persona and serve a retargeted ad for shop. Furthermore, in these cases, no user information needs

to be shared between A&A domains, since no ad auctions are being held on the publisher-side.

Case 2: Cookie Matching. The second chain type that I define are cookie matches. As the name

implies, chains in this category correspond to the instance where an auction is held on the publisher-

side, and we observe direct resource inclusion requests between the SSP and DSP, implying that they

are matching cookies.

As shown in Figure 4.6, for us to categorize a publisher-side chain as cookie matching, s and d

must be adjacent at the end of the chain. On the shopper-side, d must observe the persona at shop.

Lastly, we must observe a request from s to d or d to s in some chain before the retargeted ad is

served. These requests capture the moment when the two A&A domains match their cookies. Note

that s → d or d → s can occur in a publisher- or shopper-side chain; in practice, it often occurs in

a chain rooted at shop, thus fulfilling both requirements at once.

For this analysis, I distinguish between forward (s→ d) and backward (d→ s) cookie matches.

Figure 2.2(a) shows an example of a forward cookie match. As we will see, many pairs of A&A

domains engage in both forward and backward matching to maximize their opportunities for data
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sharing. To the best of my knowledge, no prior work examines the distinction between forward and

backward cookie matching.

Case 3: Indirect Matching. The third chain type I define are indirect matches. Indirect matching

occurs when an SSP sends meta-data about a user to a DSP, to help them determine if they should

bid on an impression. With respect to retargeted ads, the SSP tells the DSPs about the browsing

history of the user, thus enabling the DSPs to serve retargets for specific retailers, even if the DSP

never directly observed the user browsing the retailer (hence the name, indirect). Note that no cookie

matching is necessary in this case for DSPs to serve retargeted ads.

As shown in Figure 4.6, the crucial difference between cookie matching chains and indirect

chains is that d never observes our persona at shop; only s observes our persona at shop. Thus, by

inductive reasoning, we must conclude that s shares information about our persona with d, otherwise

d would never serve the persona a retarget for shop.

Case 4: Latent Matching. The fourth and final chain type that I define are latent matches. As

shown in Figure 4.6, the defining characteristic of latent chains is that neither s nor d observe our

persona at shop. This begs the question: how do s and d know to serve a retargeted ad for shop

if they never observe our persona at shop? The most reasonable explanation is that some other

ad exchange x that is present in the shopper-side chains shares this information with d behind-the-

scenes.

I hypothesize that the simplest way for A&A domains to implement latent matching is by having

x and d share the same unique identifiers for users. Although x and d are different domains and

are thus prevented by the SOP from reading each others’ cookies, both A&A domains may use the

same deterministic algorithm for generating user IDs (e.g., by relying on IP addresses or browser

fingerprints). However, as I will show, these synchronized identifiers are not necessarily visible

from the client-side (i.e., the values of cookies set by x and d may be obfuscated), which prevents

trivial identification of latent cookie matching.

Note: Although I do not expect to see cases 3 and 4, they can still occur. I explain in § 4.3.1.2

that indirect and latent matching is mostly performed by domains belonging to the same company.

The remaining few instances of these cases are probably mislabeled behaviorally targeted ads.

4.3.1.2 Categorization Results

I applied the rules in Figure 4.6 to all 35,448 publisher-side chains in our dataset twice. First, I

categorized the raw, unmodified chains; then I clustered domains that belong to the same companies,
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Table 4.1: Results of categorizing publisher-side chains, before and after clustering domains.
Unclustered Clustered

Type Chains % Chains %
Direct 1770 5% 8449 24%

Forward Cookie Match 24575 69% 25873 73%
Backward Cookie Match 19388 55% 24994 70%

Indirect Match 2492 7% 178 1%
Latent Match 5362 15% 343 1%

No Match 775 2% 183 1%

and categorized the chains again. For example, Google owns youtube.com, doubleclick.

com, and 2mdn.net; in the clustered experiments, I replace all instances of these domains with

google.com. § 8.1 lists all clustered domains.

Table 4.1 presents the results of our categorization. The first thing we observe is that cookie

matching is the most frequent classification by a large margin. This conforms to our expectations,

given that RTB is widespread in today’s ad ecosystem, and major exchanges like DoubleClick sup-

port it [2]. Note that, for a given (s, d) pair in a publisher-side chain, we may observe s → d and

d → s requests in our data, i.e., the pair engages in forward and backward cookie matching. This

explains why the percentages in Table 4.1 do not add up to 100%.

The next interesting feature that we observe in Table 4.1 is that indirect and latent matches are

relatively rare (7% and 15%, respectively). Again, this is expected, since these types of matching

are more exotic and require a greater degree of collaboration between ad exchanges to implement.

Furthermore, the percentage of indirect and latent matches drops to 1% when we cluster domains.

To understand why this occurs, consider the following real-world example chains:

Publisher-side: pub→ rubicon→ googlesyndication

Shopper-side: shop→ doubleclick

According to the rules in Figure 4.6, this appears to be a latent match, since Rubicon and Google

Syndication do not observe our persona on the shopper-side. However, after clustering the Google

domains, this will be classified as cookie matching (assuming that there exists at least one other

request from Rubicon to Google).

The above example is extremely common in our dataset: 731 indirect chains become cookie

matching chains after we cluster the Google domains alone. Importantly, this finding provides

strong evidence that Google does, in fact, use latent matching to share user tracking data between

its various domains. Although this is allowed in Google’s terms of service as of 2014 [79], my
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results provide direct evidence of this data sharing with respect to serving targeted ads. In the vast

majority of these cases, Google Syndication is the DSP, suggesting that on the server-side, it ingests

tracking data and user identifiers from all other Google services (e.g., DoubleClick and Google Tag

Manager).

Of the remaining 1% of chains that are still classified as indirect or latent after clustering, the

majority appear to be false positives. In most of these cases, we observe s and d doing cookie

matching in other instances, and it seems unlikely that s and d would also utilize indirect and latent

mechanisms. These ads are probably mislabeled behaviorally targeted ads.

The final takeaway from Table 4.1 is that the number of uncategorized chains that do not match

any of our rules is extremely low (1-2%). These publisher-side chains are likely to be false positives,

i.e., ads that are not actually retargeted. These results suggest that my image labeling approach is

very robust since the vast majority of chains are properly classified as direct or cookie matches.

4.3.2 Cookie Matching

The results from the previous section confirm that cookie matching is ubiquitous on today’s web

and that this information sharing fuels highly targeted advertisements. Furthermore, my classifica-

tion results demonstrate that we can detect cookie matching without relying on semantic information

about cookie matching mechanisms.

In this section, I take a closer look at the pairs of A&A domains that we observe matching

cookies. I seek to answer two questions: first, which pairs match most frequently, and what is the

directionality of these relationships? Second, what fraction of cookie matching relationships will be

missed by the heuristic detection approaches used by prior work [5, 65, 119, 147]?

Who Is Cookie Matching? Table 4.2 shows the top 25 most frequent pairs of A&A domains that

we observe matching cookies. The arrows indicate the direction of matching (forward, backward,

or both). “Ads” is the number of unique retargets served by the pair, while “Chains” is the total

number of associated publisher-side chains. I present both quantities as observed in our complete

dataset (containing 5,102 retargets), as well as the subset that was identified solely by the AMT

workers (containing 1,359 retargets).

We observe that cookie matching frequency is heavily skewed towards several heavy-hitters. In

aggregate, Google’s domains are most common, which makes sense given that Google is the largest

ad exchange on the web today. The second most common is Criteo; this result also makes sense,

given that Criteo specializes in retargeted advertising [45]. These observations remain broadly true
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Table 4.2: Top 25 cookie matching partners in my dataset. The arrow signifies whether we observe
forward matches (→), backward matches (←), or both (↔). The heuristics for detecting cookie
matching are: DC (match using DoubleClick URL parameters), E (string match for exact cookie
values), US (URLs that include parameters like “usersync”), and - (no identifiable mechanisms).
Note that the HTTP request formats used for forward and backward matches between a given pair
of exchanges may vary.

All Data AMT Only
Participant 1 Participant 2 Chains Ads Chains Ads Heuristics

criteo ↔ googlesyndication 9090 1887 1629 370 ↔: US
criteo ↔ doubleclick 3610 1144 770 220 →: E, US ←: DC, US
criteo ↔ adnxs 3263 1066 511 174 ↔: E, US
criteo ↔ googleadservices 2184 1030 448 214 →: E, US ←: US
criteo ↔ rubiconproject 1586 749 240 113 ↔: E, US
criteo ↔ servedbyopenx 707 460 111 71 ↔: US

mythings ↔ mythingsmedia 478 52 53 1 →: E, US ←: US
criteo ↔ pubmatic 363 246 64 37 →: E, US ←: US

doubleclick ↔ steelhousemedia 362 27 151 16 →: US ←: E, US
mathtag ↔ mediaforge 360 124 63 13 ↔: E, US
netmng ↔ scene7 267 162 45 32 →: E ←: -

criteo ↔ casalemedia 200 119 54 31 →: E, US ←: US
doubleclick ↔ googlesyndication 195 81 101 62 ↔: US

criteo ↔ clickfuse 126 99 14 13 ↔: US
criteo ↔ bidswitch 112 78 25 15 →: E, US ←: US

googlesyndication ↔ adsrvr 107 29 102 24 ↔: US
rubiconproject ↔ steelhousemedia 86 30 43 19 ↔: E

amazon-adsystem ↔ ssl-images-amazon 98 33 33 7 -
googlesyndication ↔ steelhousemedia 47 22 36 16 -

adtechus → adacado 36 18 36 18 -
googlesyndication ↔ 2mdn 40 19 39 18 →: US ←: -

atwola → adacado 32 6 28 5 -
adroll ↔ adnxs 31 8 26 7 -

googlesyndication ↔ adlegend 31 22 29 20 -
adnxs ↔ esm1 46 1 0 0 →: US ←: -

across the AMT and complete datasets: although the relative proportion of ads and chains from less-

frequent exchange pairs differs somewhat between the two datasets, the heavy-hitters do not change.

Furthermore, we also see that the vast majority of A&A pairs are identified in both datasets.

Interestingly, we observe a great deal of heterogeneity with respect to the directionality of cookie

matching. Some boutique exchanges, like Adacado, only ingest cookies from other exchanges.

Others, like Criteo, are omnivorous, sending or receiving data from any and all willing partners.

These results suggest that some participants are more wary about releasing their user identifiers to

other exchanges.

Comparison to Prior Work. I observe many of the same participants matching cookies as prior

work, including DoubleClick, Rubicon, AppNexus, OpenX, MediaMath, and myThings [5,65,147].

Prior work identifies some additional ad exchanges that I do not (e.g., Turn); this is due to my

exclusive focus on participants involved in retargeted advertising.

However, I also observe participants (e.g., Adacado and AdRoll) that prior work does not. This
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may be because prior work identifies cookie matching using heuristics to pick out specific features

in HTTP requests [5,65,119,147]. In contrast, my proposed categorization approach is content and

mechanism agnostic.

To investigate the efficacy of heuristic detection methods, I applied three of them to my dataset.

Specifically, for each pair (s, d) of exchanges that I categorize as cookie matching, I apply the

following tests to the HTTP headers of requests between s and d or vice-versa:

1. I look for specific keys that are known to be used by DoubleClick and other Google domains

for cookie matching (e.g., “google_nid” [147]).

2. I look for cases where unique cookie values set by one participant are included in requests

sent to the other participant5.

3. I look for keys with revealing names like “usersync” that frequently appear in requests be-

tween participants in our data.

As shown in the “Heuristics” column in Table 4.2, in the majority of cases, heuristics are able to

identify cookie matching between the participants. Interestingly, we observe that the mechanisms

used by some pairs (e.g., Criteo and DoubleClick) change depending on the directionality of the

cookie match, revealing that the two sides have different cookie matching APIs.

However, for 31% of our cookie matching partners, the heuristics are unable to detect signs of

cookie matching. I hypothesize that this is due to obfuscation techniques employed by specific ad

exchanges. In total, there are 4.1% cookie matching chains that would be completely missed by

heuristic tests. This finding highlights the limitations of prior work and bolsters the case for my

content- and platform-agnostic classification methodology.

4.3.3 The Retargeting Ecosystem

In this last section, I take a step back and examine the broader ecosystem for retargeted ads

that are revealed by our dataset. To facilitate this analysis, I construct a graph by taking the union

of all of our publisher-side chains. In this graph, each node is a domain (either a publisher or an

A&A), and edges correspond to resource inclusion relationships between the domains. My graph

formulation differs from prior work in that edges denote actual information flows, as opposed to

simple co-occurrences of trackers on a given domain [77].

5To reduce false positives, I only consider cookie values that have length >10 and <100.
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Table 4.3: Overall statistics about the connectivity, position, and frequency of A&A domains in the
dataset.

Degree Position p in Chains (%) # of Shopper # of
Domain In Out In/Out Ratio p2 pn−1 pn Websites Ads

criteo 35 6 5.83 9.28 0.00 68.8 248 3,335
mediaplex 8 2 4.00 0.00 85.7 0.07 20 14

tellapart 6 1 6.00 25.0 100.0 0.18 33 9
mathtag 12 6 2.00 0.00 90.9 0.06 314 2

mythingsmedia 1 0 - 0.00 0.00 1.41 1 59
steelhousemedia 8 0 - 0.00 0.00 16.8 40 89

D
SP

s

mediaforge 5 0 - 0.00 0.00 1.28 29 143
pubmatic 5 9 0.56 3.17 74.2 0.01 362 4

rubiconproject 19 22 0.86 23.5 62.8 0.01 394 3
adnxs 18 20 0.90 94.2 91.9 0.16 476 12

casalemedia 9 10 0.90 1.30 90.0 0.00 298 0
atwola 4 19 0.21 84.6 18.2 0.01 62 2

advertising 4 4 1.00 0.00 75.0 0.10 337 17

A
O

L

adtechus 17 16 1.06 1.58 27.3 0.09 328 15
servedbyopenx 6 11 0.55 7.2 83.8 0.00 2 0

openx 10 9 1.11 0.95 9.83 0.00 390 0

SS
Ps

O
pe

nX

openxenterprise 4 4 1.00 40.0 20.0 0.00 1 0
googletagservices 44 2 22.00 93.7 0.00 0.00 65 0
googleadservices 4 17 0.24 2.94 33.5 0.00 485 0

2mdn 3 1 3.00 0.00 0.00 1.35 62 125
googlesyndication 90 35 2.57 70.1 62.7 19.8 84 638G

oo
gl

e

doubleclick 38 36 1.06 38.8 63.1 0.22 675 19

Table 4.3 presents statistics on the top A&A domains in our dataset. The “Degree” column

shows the in- and out-degree of nodes, while “Position” looks at the relative location of nodes

within chains. p2 is the second position in the chain, corresponding to the first ad network after

the publisher; pn is the DSP that serves the retarget in a chain of length n; pn−1 is the second to

last position, corresponding to the final SSP before the DSP. Note that a domain may appear in a

chain multiple times, so the sum of the pi percentages maybe >100%. The last two columns count

the number of unique e-commerce sites that embed resources from a given domain, and the unique

number of ads served by the domain.

Based on the data in Table 4.3, we can roughly cluster the ad domains into two groups, corre-

sponding to SSPs and DSPs. DSPs have low or zero out-degree since they often appear at position

pn, i.e., they serve an ad and terminate the chain. Criteo is the largest source of retargeted ads in

our dataset by an order of magnitude. This is not surprising, given that Criteo was identified as the

largest retargeter in the US and UK in 2014 [45].

In contrast, SSPs tend to have in/out-degree ratios closer to 1, since they facilitate the exchange

of ads between multiple publishers, DSPs, and even other SSPs. Some SSPs, like Atwola, work

more closely with publishers and thus appear more frequently at p2, while others, like Mathtag,

cater to other SSPs and thus appear almost exclusively at pn−1. Most of the SSPs we observe

also function as DSPs (i.e., they serve some retargeted ads), but there are “pure” SSPs like Casale
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Media and OpenX that do not serve ads. Lastly, Table 4.3 reveals that SSPs tend to do more user

tracking than DSPs, by getting embedded in more e-commerce sites (with Criteo being the notable

exception).

Google is an interesting case study because its different domains have clearly delineated pur-

poses. googletagservices is Google’s in-house SSP, which funnels impressions directly from

publishers to Google’s DSPs: 2mdn, googlesyndication, and doubleclick. In contrast,

googleadservices is also an SSP, but it holds auctions with third-party participants (e.g.,

Criteo). googlesyndication and doubleclick function as both SSPs and DSPs, sometimes

holding auctions, and sometimes winning auctions held by others to serve ads. Google Syndication

is the second most frequent source of retargeted ads in our dataset behind Criteo.

Although we can develop heuristics like “Position in Chain" or “In/Out Degree Ratio" to char-

acterize A&A domains, it is clear from Table 4.3 that determining the role of an A&A domain is not

trivial. For example, I have categorized Atwola as an SSP since it appears at p2 84.6% of the times,

however, its in/out-degree ratio is 0.21; not close to 1 like known ad exchanges (e.g., DoubleClick).

I discuss the challenges of categorizing A&A domains more in chapter 6. So, while this analysis

gives us a rough idea of these roles, it will still contain several miscategorizations.

4.4 Summary

In this chapter, I developed a novel, principled methodology for detecting flows of tracking

information between arbitrary A&A domains. This methodology is content- and platform-agnostic

because it relies on the semantics of how exchanges serve ads, rather than focusing on specific

cookie matching mechanisms. The key insight behind my approach is to leverage retargeted ads as

a mechanism for identifying information flows. This is possible because the strict conditions that

must be met for a retarget to be served allow us to infer the precise flow of tracking information that

facilitated the serving of the ad.

Using an instrumented version of Chromium [17], I conducted extensive experiments using 90

personas to collect 35,448 inclusion chains associated with 5,102 unique retargeted ads (§ 4.1).

Then, using regular-expression like matching rules (§ 4.3.1.1), these chains are categorized into

four different categories. Through this categorization, I am able to reveal the underlying mecha-

nism (i.e., cookie matching, server-side matching) used by A&A domains for information-sharing.

As expected, cookie matching was the most common mechanism used to share user identifiers

(§ 4.3.1.2).
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Improvement Over Prior Work. My proposed methodology addresses the limitations of prior

works [5,65,147] that rely on specific string patterns in HTTP content to detect information-sharing

(cookie matching) among A&A domains. Since my methodology does not rely on HTTP content, it

can detect both client- and server-side information-sharing flows. I demonstrate in § 4.3.1.2 that out

of 200 cookie matching A&A partners I found, 31% of them would have been missed by heuristics

used in prior works. Furthermore, I provided empirical evidence that Google shares tracking data

across its services via server-side matching. Identification of such server-side information flows

would not have been possible using techniques from prior works.

User’s Digital Footprint. Data collected from these experiments can be crucial in understanding

the true digital footprint of the user. That, in turn, can help develop effective privacy protection tools

for users. For example, a privacy extension can inform users about the top x A&A domains that view

user’s information and can provide them an option to block them. In chapter 6, I use the data from

this study to model an accurate picture of the user’s privacy digital footprint.
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Chapter 5

A Longitudinal Analysis of the

ads.txt Standard

The primary goal of my dissertation is to study the privacy implications of Real Time Bidding

(RTB) so that we can better understand the privacy digital footprint of the user in the modern ad

ecosystem. In particular, I want to understand the information sharing between A&A domains which

happens either to facilitate the RTB auctions via cookie matching or as a consequence of them. In

chapter 4, I address the limitations of prior works by proposing a generic content- and platform-

agnostic methodology to detect information sharing among arbitrary A&A domains. This solves

one piece of the puzzle; we still need to understand how much privacy leakage happens through

ad exchanges when they contact multiple DSPs during an ad auction (see § 1.1). To factor that

into the user privacy model, we need an accurate list of A&A domains which act as ad exchanges.

Identification of such a list is important since ad exchanges have this extra “power" to disperse

tracking information to multiple ad networks during a single RTB auction. However, as I explained

in § 4.3.3, identifying the roles of A&A domains in an automated way is not a trivial task.

Therefore, in this chapter, I make use of a recently introduced transparency standard called

ads.txt. The ads.txt standard was introduced by the Interactive Advertising Bureau (IAB) in

2017 [167]. The main motivation behind the ads.txt standard is to tackle the issue of domain

spoofing, which has long plagued the RTB ecosystem. However, as I will explain later, the data

from this standard has the potential to identify a list of A&A domains that act as ad exchanges. So,

I use the data from this standard as an opportunity to 1) isolate an accurate list od ad exchanges and

2) understand whether ad exchanges and DSPs are complying with the ads.txt standard in the
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effort to combat domain spoofing.

The complexity, scale, and opacity of the ad ecosystem create opportunities for various kinds

of fraud. While click and impression fraud are longstanding problems [46, 49, 181, 183], RTB in

particular has opened the door to a novel fraud known as domain spoofing [37, 98, 101]. In this

attack, the fraudster creates fake bid requests for impressions that were purportedly generated by

visitors to high-value publishers (e.g., CNN or YouTube). Advertisers/DSPs bid highly to show their

ads on these valuable publishers, but the ads end up appearing on low-value websites, or nowhere

at all, while the fraudster collects the profit. Attackers can earn millions of dollars per day spoofing

bid requests [37].

The fundamental issue that enables domain spoofing is the opacity of the RTB ecosystem: ad-

vertisers cannot tell which auctioneers (exchanges) are authorized to sell impression inventory from

a given publisher. This lack of transparency gives attackers the ability to spoof inventory from any

publisher. To address this problem, the Interactive Advertising Bureau (IAB) Tech Lab introduced

the ads.txt standard [167] in 2017. ads.txt is designed to rectify this transparency problem

by allowing publishers to state, in a machine-readable format, which auctioneers are authorized to

sell their impression inventory [83]. To opt-in to the standard, a publisher must place a file named

/ads.txt at the root of their website; exchanges and DSPs can then download the file and verify

the authenticity of bid requests.

In addition to helping mitigate domain spoofing, the ads.txt standard is of potential interest

to researchers and privacy advocates. The opacity of the online advertising ecosystem has long

frustrated attempts to understand which third-parties are part of the ecosystem, as well as the role of

each third-party (e.g., tracker, advertiser, auctioneer, etc.). The practical consequence of this opacity

is that users have grown suspicious of online advertisers and their privacy practices [11, 121, 187].

ads.txt fundamentally changes the landscape, by making it explicit which third-party domains

in a given first-party context are ad exchanges (i.e., auctioneers). In aggregate, ads.txt data has

the potential to reveal, for the first time, the relationships between publishers, ad exchanges, DSPs,

and advertisers.

In this chapter, I take the first step towards measuring and quantifying the landscape revealed by

ads.txt-compliant publishers. In particular, I aim to answer two basic questions:

1. How useful is the ads.txt standard as a transparency mechanism? This includes the scope,

specificity, and correctness of the data contained in ads.txt files. This will potentially let

me extract an accurate list of ad exchanges.
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2. Are members of the online ad ecosystem complying with the ads.txt standard? This in-

cludes the adoption of the standard by publishers, as well as enforcement (or lack thereof) of

the standard by ad exchanges and DSPs when bidding on impressions.

To answer these questions, I crawled ads.txt files from Alexa Top-100K websites every

month between January 2018 and April 2019. I focus on these websites because their impres-

sions are valuable, and thus they have the strongest incentive to adopt ads.txt. I also conducted

monthly crawls of the Alexa Top-100K websites to gather information about the ad exchanges and

other A&A domains that each website interacted with. This data allows me to observe whether

auctioneers and DSPs appear to be in compliance with the rules stipulated in publishers’ ads.txt

files.

Through this study, I make the following key contributions and findings:

• I present the first large-scale, longitudinal study of ads.txt. I observe that as of April 2019,

20% of Alexa Top-100K websites have adopted the standard, which rises to 62% when we

only consider websites that display ads via RTB auctions. This demonstrates that ads.txt

has achieved impressive adoption since it was introduced in 2017.

• With respect to transparency, ads.txt allows us to identify 1,035 unique domains belong-

ing to ad exchanges from 62% of the Alexa Top-100K publishers that display ads via RTB

auctions. That said, I also find that ads.txt data has a variety of imperfections, and I

develop methods to mitigate these deficiencies.

• With respect to compliance, I find that the vast majority of RTB ads in our sample were

bought from authorized sellers. This suggests that ad exchanges and DSPs are complying

with the standard. However, I also see that domain spoofing is still possible because major ad

exchanges still accept impression inventory from publishers that have not adopted ads.txt.

Further, I document cases where major ad exchanges purchased impressions from unautho-

rized sellers, in violation of the standard.

5.1 Background

In this section, I briefly introduce the rationale behind the ads.txt standard and discuss the

standard in detail.
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5.1.1 Ad Fraud and Spoofing

The online ad ecosystem has long been plagued with fraud, generating estimated losses of $8.2

billion per year in 2015 [95]. The most well-known forms are impression fraud and click fraud [49,

151, 181]. In this scheme, the attacker creates a seemingly-legitimate publisher and contracts with

ad exchanges to sell their impressions. The attacker then earns revenue by directing fraudulent

traffic to their own publisher. I discuss prior work on these forms of fraud in § 5.2.

The rise of programmatic advertising has created an opportunity for a different type of fraud

known as domain spoofing or sometimes inventory counterfeiting [37, 98, 101]. In this scheme, the

attacker generates bid requests that are supposedly for impressions on a high-value publisher (e.g.,

CNN or The New York Times), when in reality these impressions are either (1) entirely fabricated or

(2) actually generated from a low-value publisher (which is often controlled by, or collaborates with,

the attacker). Attackers can implement spoofing attacks by creating or compromising an SSP, or (in

some cases) simply by setting up an illegitimate publisher. The attacker can make their spoofed

inventory harder to detect by mixing it with legitimate inventory [183].

5.1.2 A Brief Intro to ads.txt

The fundamental flaw in the programmatic advertising ecosystem that enabled domain spoofing

is that legitimate ad exchanges and DSPs had no way of knowing which ad exchanges/SSPs were

authorized to sell impression inventory from a given publisher. This lack of transparency gave

attackers the ability to spoof inventory from any publisher.

To combat spoofing, the Interactive Advertising Bureau (IAB) Tech Lab, which is a non-profit

trade association for online advertisers, introduced the ads.txt standard [167]. The standard is

designed to rectify the transparency issues that allowed spoofing to flourish, by allowing publishers

to state, in a machine-readable format, which SSPs and ad exchanges are authorized to sell their

impression inventory. To be compliant with the standard, ad exchanges and SSPs are supposed to

not accept inventory they are not authorized to sell, while DSPs are not supposed to buy inventory

from unauthorized sellers.

ads.txt 1.0 was introduced in May 2017 [167], and the latest 1.0.2 standard was published

in March 2019 [83]. Google announced that by December 2018, DSPs in their exchange would

purchase impressions that were authenticated via ads.txt by default [80, 89], i.e., a DSP would

need to opt-out of the security measure if they wanted to purchase unauthenticated impressions.

Google runs one of the largest ad exchanges [25], which created a strong incentive for publishers to
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# CNN. com / ads . t x t
go og l e . com , pub−7439281311086140 , DIRECT , f 0 8 c 4 7 f e c 0 9 4 2 f a 0
r u b i c o n p r o j e c t . com , 11078 , DIRECT , 0 bfd66d529a55807
c . amazon−adsys t em . com , 3159 , DIRECT # banner , v i d e o
openx . com , 537153334 , DIRECT # banner
openx . com , 540038342 , DIRECT , a698e2ec38604c6 # banner
pubmat i c . com , 156565 , RESELLER , 5 d62403b186f2ace # banner
pubmat i c . com , 156599 , DIRECT , 5 d62403b186f2ace # banner

Listing 5.1: Example ads.txt taken from cnn.com on May 11, 2019 (and edited for brevity).

adopt ads.txt by the end of 2018 if they wanted their inventory to be purchasable by all DSPs in

the auction.

5.1.3 ads.txt File Format

Much like the robots.txt exclusion standard [105], the ads.txt standard is instantiated

by including a text file named /ads.txt at the root of a website. Listing 5.1 shows an example

ads.txt file for illustrative purposes. ads.txt files obey a simple, line-oriented format; in

keeping with the IAB specification [83], we refer to each line as a record. Each record contains

three or four comma-separated fields that authorize a given SSP/ad exchange to sell impression

inventory on behalf of the given publisher. The fields are:

1. Seller Domain: A domain name specifying the SSP or ad exchange that the publisher is

authorizing to sell their impression inventory.

2. Publisher ID: A string that uniquely identifies the publisher’s account within the ad system

hosted by the company in field 1.

3. Relationship: Either “DIRECT” or “RESELLER” depending on whether the publisher is

the contractual owner of the advertising account in field 2 (former) or that the publisher has

contracted with a third-party to manage the account (latter).

4. Certification Authority ID (Optional): An ID that uniquely corresponds to the company in

field 1. As of this writing, these IDs are assigned by the Trustworthy Accountability Group.1

Every <seller, publisher ID, relationship> triple uniquely defines a business relationship be-

tween the given seller and the publisher who authored the ads.txt file. Note that a given sell-

er/publisher pair may have multiple business relationships, each encoded as a different record in the

ads.txt file. As shown in Listing 5.1, this may happen if the publisher has multiple accounts with

1https://www.tagtoday.net/
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the seller (field #2 varies) and/or because the publisher has DIRECT and RESELLER relationships

with the seller (field #3 varies).

ads.txt files may also contain comments, delimited by the “#” character. These may appear

on their own line or at the end of record lines. Further, ads.txt files may contain additional

meta-data that appears in a “variable=value” format. In our dataset (described in § 5.3), I observe

that this meta-data is rare, and I ignore it in this study.

The most confusing aspect of the ads.txt standard is that the seller domains listed in field #1

are not necessarily the domains that host ad auctions. For example, Google specifies that its seller

domain is google.com, even though the actual auctions are hosted at doubleclick.net.

Each SSP/ad exchange defines what domain should be placed in field #1 to authorize them.

5.2 Related Work

In this section, I survey the literature on the ecosystem of ad fraud and prevention mechanisms.

I also discuss related work on the ads.txt standard.

5.2.1 Ad Fraud

Over the years, numerous white-papers and blog posts have been published by researchers and

advertisers, documenting the issues pertaining to ad fraud. In 2016, the IAB published a white-paper

highlighting that ad fraud costs advertisers $8.2B per year [95, 172]. Similarly, the Association of

National Advertisers (ANA) reported ad fraud costs of $7.2B in 2016 [175]. Daswani et al. present

an accessible introduction to the topic of ad fraud in [46].

Researchers have proposed methodologies to study various forms of ad fraud. Springborn et

al. examined the extent of impression fraud by setting up honeypot websites [181]. Dave et al.

provided a systematic look at click-spam and proposed an automated methodology to fingerprint

click-spam attacks [49]. Some studies have provided case studies on botnets conducting click-

spam [47, 131, 151]. Haddadi et al. [87] used bluff ads to detect click fraud. Stone-Gross et al.

studied ad fraud in ad exchanges [183].

Several prevention mechanisms have also been introduced in the literature. Zhang et al. and

Metwally et al. proposed methodologies to combat ad fraud by identifying duplicate clicks [129,

199]. Metwally et al. further proposed an approach to detect click fraud by looking for similarities

among fraudsters [130]. Nazerzadeh et al. provided an approach based on economic incentives to
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counter ad fraud [139]. However, sophisticated botnets like ZeroAccess [173] and ClickBot.A [39]

can evade such prevention mechanisms. Pearce et al. and Daswani et al. outlined techniques

to combat fraud from botnets [47, 151]. WhiteOps published a report on their takedown of the

infamous Methbot [128].

Domain spoofing has been a major issue in programmatic advertising. A good introduction to

domain spoofing is provided in [98, 101]. Recently, Methbot spoofed domains for more than 6,000

premium publishers to generate revenue of $5M per day [37]. In November 2017, Adform pub-

lished a white-paper describing how they took down HyphBot, which was generating 1.5B spoofed

requests per day [94].

5.2.2 ads.txt Adoption

Besides a white-paper and some blog posts, to the best of my knowledge, there is no prior work

that provides an in-depth, longitudinal analysis of the ads.txt standard.

Lukasz Olejnik, an independent researcher, recently published a white-paper on his longitudinal

study of the ads.txt standard [145]. Olejnik gathered ads.txt data on Alexa Top-100K pub-

lishers from August 2017, right after the inception of the ads.txt, to March 2018. He performed

one more crawl towards the end of December 2018. Results from this white-paper corroborate

our findings regarding longitudinal trends in adoption and top sellers. Olejnik did not study the

compliance aspect of the standard.

Since the inception of the ads.txt standard, several blog posts have studied its trends, and

different companies have reported different trends. Pixalate reported a x5 growth in ads.txt

adoption in 2018, with 75% of the top 1,000 programmatic domains adopting the standard [154].

They also claim that ads.txt has reduced ad fraud by 10% [155]. According to OpenX, 60%

of the top 1,000 publishers (comScore’s list) have adopted the standard [153]. First Impressions’

reported adoption trends on Alexa Top-1000 sites are similar to ours [69]. Some blogs also noticed

errors in publishers’ ads.txt files [69, 153].

Several companies, including Google, provide tools for publishers to generate and validate their

ads.txt records [9, 10, 80].

In their bid to eliminate the ability to profit from counterfeit inventory and bring more trans-

parency to programmatic advertising, IAB has recently introduced a ads.txt-like standard for

mobile apps, called app-ads.txt [84]. Furthermore, IAB is working towards introducing another

standard called sellers.json, which will allow the buyers to discover the identities of all the
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# I n c o r r e c t format , l e s s than 3 comma s e p a r a t e d f i e l d s
go og l e . com − pub−7439281311086140 , DIRECT
# I n v a l i d s e l l e r domain , m i s s p e l l e d r u b i c o n p r o j e c t . com
r u b i c n p r o j e c t . com , 17380 , DIRECT , 0 bfd66d529a55807
# d o u b l e c l i c k . n e t i s i n c o r r e c t , s h o u l d be go og l e . com
d o u b l e c l i c k . ne t , pub−7439281311086140 , DIRECT

Listing 5.2: Example ads.txt containing different classes of errors in each record.

authorized reseller partners of a participating seller (SSP) [85].

5.3 Methodology

The goal of this study is to monitor publishers’ adoption of the standard, the involvement of

authorized sellers (exchanges/SSPs), and compliance with the standard by buyers (DSPs). In this

section, I outline how I collected and cleaned ads.txt data. Then I describe how I collected

resource inclusions from publishers to determine compliance with the ads.txt standard.

5.3.1 Collection of ads.txt Data

The most crucial dataset for our study is ads.txt files from publishers. To obtain this data, I

started crawling the Alexa Top-100K websites on January 15, 2018. Up until December 1, 2018, I

repeated the ads.txt crawl every 15 days. After that, I crawled once every 30 days (on the 1st of

each month). The latest snapshot used in this study is from April 1, 2019. Overall, I performed 26

crawls.

After the start of our data collection, Scheitle et al. [171] and others [158, 170] published com-

pelling analyses that document instabilities in the Alexa ranking. Considering these results, from

October 15, 2018 onwards, I started updating the list of target websites in my crawl: before each

crawl, I fetched the latest Alexa Top-100K list, computed the union of it and my existing list of

target websites, and crawled the result. Subsequently, my sample size grew from 100K websites on

January 15, 2018, to 240K on April 1, 2019.

According to the IAB standard, the ads.txt file must be placed at the root of a given domain.

I used Python’s requests module to fetch the ads.txt files: for each publisher p from the

Alexa Top-100K, I accessed the /ads.txt URL from p’s root. I sent a valid User-Agent with

each request. I was able to crawl all the target websites within 2–3 hours by parallelizing across a

16-node cluster at Northeastern University.
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5.3.1.1 Parsing and Cleaning

To facilitate analysis, I parsed all of the ads.txt files gathered by the crawler. In theory,

ads.txt files are supposed to obey the IAB specified format outlined in § 5.1.3; in practice, I

observed many files with errors, which necessitated that I develop a custom approach for parsing

and validating ads.txt files.

I observed that publishers made a variety of mistakes in their ads.txt files, of which I high-

light three examples in Listing 5.2. Some records, such as the first in Listing 5.2, contain syntactic

errors, i.e., they do not obey the formatting specification. Other records contained semantic errors.

For example, the second record in Listing 5.2 is in the correct format, but the seller is incorrect:

it is supposed to be rubiconproject.com, but is rubicnproject.com instead. The third

record in Listing 5.2 illustrates an even subtler error, where the seller domain has been accidentally

replaced by a related, but incorrect, domain. In this case, the seller should be google.com but

was mistakenly added as doubleclick.net.

I used a multi-stage filtering process to remove records with syntax errors and some semantic

errors. First, I discarded all records that did not conform to the ads.txt specification (e.g., the first

record in Listing 5.2). Second, I extracted all 2,381 unique seller domains S from the syntactically

valid records in our dataset. Third, to identify semantically invalid domains (like the second record

in Listing 5.2), I queried each domain in the WHOIS database. I was able to find WHOIS data

for 1,035 of the seller domains. To make sure that I did not have any false negatives (i.e., the

WHOIS crawl failed to fetch data for a valid seller domain), I also performed DNS resolution on

all the negative samples. None of the domains in the negative sample had a successful resolution.

Therefore, unless mentioned otherwise, I only consider the 1,035 seller domains Sv in my analysis.

Further, I disregard all records containing the 1,346 unresolvable seller domains.

My filtering method cannot identify semantic errors like in the third record in Listing 5.2 be-

cause, in these cases, the erroneous domains are valid and resolvable. As I discuss in § 5.4.2,

I estimate that ∼20% of the unique sellers in my dataset are the result of such errors, but these

low-frequency sellers end up having very limited impact on the analysis.

5.3.1.2 Collecting Resource Inclusions

To assess compliance with the ads.txt standard on an ads.txt-enabled publisher, I need to

examine which sellers and buyers were involved in serving ads through RTB auctions. To accom-
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plish this, I rely on inclusion trees described in § 4.1.22.

Using this tool, I repeatedly drove a Chrome browser to collect resource inclusions for all the

publishers from the ads.txt crawl. These crawls were done right after each ads.txt crawl

finished (see § 5.3.1). In particular, for each publisher p in the dataset, the crawler visited the

homepage for p, then iteratively crawled 15 randomly selected links that pointed to p. During these

crawls, I presented a valid User-Agent, scrolled pages to the bottom, and waited for∼10 seconds

between subsequent page visits.

Once I had collected inclusion trees from publishers, I decomposed them into inclusion chains

to facilitate analysis. For a given inclusion tree (corresponding to a single visit of a webpage), the

chains are simply all of the root-to-leaf paths in the tree.

5.3.1.3 Detecting Ads

The last step in the methodology is identifying all of the inclusion chains that correspond to

the serving of an ad. I do this by applying a series of filters: first, I eliminate all chains where the

final resource is not an image. Second, I filter out chains where the final image is ≤ 50×50 pixels.3

Finally, I filter out chains that include zero requests to a URL that matches a rule in EasyList [54].

This last step allows me to separate benign images from advertisements by ensuring that a known

advertising-related URL was involved in serving the image.

5.4 Adoption of ads.txt

In this section, I analyze the adoption of the ads.txt standard over our 15-month study. I

examine adoption trends from the perspective of Alexa Top-100K publishers and top sellers that

appear in the ads.txt files.
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5.4.1 Publisher’s Perspective

I begin by examining the ads.txt standard from the perspective of publishers, starting with

the adoption of the standard by Alexa Top-100K websites over time. The Static 100K line in Fig-

ure 5.1 shows adoption by a static set of Alexa Top-100K websites that was sampled in January

2018. The Varying 100K line shows adoption by a dynamic set of Alexa Top-100K websites that

grows over time to incorporate newly popular sites (see § 5.3.1). In January 2018, we observed

12.7% of websites adopting the standard, which grew steadily to 19.7% in April 2019. Adding

new, popular websites over time had a negligible impact on our results. Further, my observations

match those of Lukasz Olejnik, an independent researcher who has also been tracking ads.txt

adoption [145].

Although adoption of ads.txt by Alexa Top-100K websites is modest overall, this baseline

is too liberal since it includes websites that (1) do not display ads or (2) do not display ads via

ad exchanges (e.g., Facebook, YouTube). There is no reason for these classes of websites to adopt

ads.txt. To account for this, I isolate the set of websites WRTB from our complete set of crawled

websites W that appear to be displaying ads via RTB auctions. At a high-level, website w ∈ W is

also a member of WRTB if we observe ≥1 inclusion chain rooted at w that includes ≥1 requests to

a known ad exchange. I derive this list of known ad exchanges from the ads.txt data itself; see

§ 5.5.2 for further details.

The RTB Present line in Figure 5.1 shows adoption of ads.txt over time by websites in

2 By the time of this study, Google had release Chrome Debugging Protocol (CDP) [38], which grants fine-grained access to Chrome’s
internals without the need to instrument the browser source code. We modified our tool to collect inclusion trees using CDP. In terms
of inclusions, we still get the same information; CDP just provides more fine-grained information. To capture dynamic inclusions,
scriptParsed events were used in the Debugger domain, and requestWillBeSent and responseReceived events were
used in the Network domain. Through scriptParsed, JavaScript triggered by remote and inline scripts was tracked, whereas
requestWillBeSent and responseReceived were used to observe any further resource requests. iframe inclusions were
captured by collecting frameNavigated events in the Page domain.

3These images are too small to be ads; most are 1×1 tracking pixels. We chose 50×50 since it is smaller than any of the typical
online advertising format [42, 43].
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WRTB . We observe that adoption has increased from 46.6% to 62.3% over the 15-months of this

study4. Thus, although the majority of popular, ad-revenue supported publishers on the web have

adopted ads.txt, there is still a significant number that remain vulnerable to ad inventory fraud

attacks (see § 5.1.1).

Alexa Rank of ads.txt Publishers. Next, I investigate how ads.txt adoption varies

by publisher popularity. Figure 5.2 shows the frequency count of publishers with ads.txt files

binned into groups of 1,000 by Alexa rank, drawn from two snapshots taken one year apart. Al-

though adoption is uniformly higher in April 2019 as compared to April 2018, across both snapshots

we see the same trend: publishers with high Alexa ranks have higher ads.txt adoption. For ex-

ample, the adoption rate is ∼40% for Alexa Top-1K publishers. This is a positive, if somewhat

expected trend, since popular (i.e., lucrative) publishers may be higher-value targets for ad inven-

tory fraud attacks.

5.4.1.1 Correctness

Now that I have identified all publishers with ads.txt files in each snapshot, I can start ana-

lyzing the contents of these files. For a given publisher p, I validate all the records in its ads.txt

file according to the IAB specification to identify syntactic errors (see § 5.1.3). Note that at this

point, I do not attempt to validate the correctness of sellers; I defer this analysis to § 5.4.2.

Figure 5.3 shows the number of valid and invalid records in ads.txt files for all the publishers

in two snapshots. Our first observation is that the size of ads.txt files grew between April 2018

and 2019: the number of valid records increased from 25 to 40 at the 50th percentile over this

year.5 This occurred because existing publishers added more sellers to their files and because new

publishers with relatively long ads.txt files adopted the standard over the year-long period. Our

second observation is that a minority of publishers have large ads.txt files: 33% of publishers

have ads.txt files with ≥100 valid entries, and 1% have ≥1000 valid entries. Broadly speaking,

there are two types of websites that fall into these ranges: (1) well-known publishers like cnn.com

and espn.com that have a large, valuable impression inventory and thus maintain relationships

with many ad exchanges, or (2) platforms like wordpress.com and ucoz.com that provide

hosting for thousands of small, independent publishers. Our final observation from Figure 5.3 is

that 10% of the publishers have ≥1 invalid record in their ads.txt file.

4The inclusion crawls failed to tag image resources for the first 3 snapshots. That is why RTB Present line in Figure 5.1 starts from
April 2018.

5This observation also matches Lukasz Olejnik’s findings [145].
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Table 5.1: Top 10 clusters of publishers using the same ads.txt file.
Cluster Unique Whois Unique Whois Unique Whois # IPs

# Size Servers (Empty) Registrars (Empty) Emails (Empty) Comments /24 /16
1 233 19 (1) 19 (1) 12 (53) Redirected to ads.adthrive.com/sites/UNIQ_ID/ads.txt. 156 71
2 198 23 (3) 25 (0) 13 (51) Use ads.txt provided by MediaVine. 155 73
3 178 1 (177) 2 (176) 1 (177) Sub-domains of livejournal.com, and use it’s ads.txt. 2 2
4 106 1 (0) 1 (0) 1 (0) Redirected to ads.iacapps.com/generic/ads.txt by MindSpark Interactive. 2 2
5 97 1 (0) 1 (0) 1 (0) All owned by Vox Media. 7 1
6 73 6 (1) 8 (0) 4 (37) Same website publishing platform used. 28 6
7 70 2 (68) 2 (68) 5 (6) Sub-domains of uol.com.br. 11 7
8 56 4 (46) 12 (24) 8 (37) Same website format (search engine). Mostly linking to izito.* and zapmeta.*. 5 4
9 56 1 (0) 1 (0) 1 (0) Same website format (news). Same registrar and corresponding email. 4 4

10 52 16 (9) 19 (6) 16 (16) All domains provide free video streaming (mostly for movies and porn). 48 25

5.4.1.2 Clustering Publishers Using ads.txt

In theory, each publisher should have a unique ads.txt file, since they have unique IDs in

each exchange marketplace (see § 5.1.3). However, I observed some publishers distributing identical

ads.txt files.

To investigate this surprising finding I plot Figure 5.4, which shows the number of publishers

distributing each unique ads.txt file in our dataset. I find that ∼ 10% of the ads.txt files

are distributed by >1 publisher and that this fraction is invariant over time. The most common

ads.txt file in our dataset was distributed by 233 publishers in the April 2019 snapshot. Fig-

ure 5.5 shows the number of clusters of size x, where a cluster is defined as a group of publishers

distributing the same ads.txt file. For example, there is a single cluster of publishers of size 233,

and 1,539 clusters of size two distributing identical files.

To gain a better understanding of why these publishers are distributing identical ads.txt

files, I manually analyzed the top 10 largest clusters. For each cluster, I (1) crawled the WHOIS

registry data for its constituent publishers and (2) resolved the publisher domains to IP addresses

and checked how many belonged to the same /24 and /16 subnets. Additionally, I randomly sampled

20 websites from each cluster and manually inspected their homepages and ads.txt files.

The results of this investigation are shown in Table 5.1. For each of the top-10 clusters, I show

the number of unique servers, registrars, and contact email addresses from WHOIS associated with
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Figure 5.8: Sellers across two
snapshots.

publishers in that cluster, as well as the number of unique /16 and /24 IP address ranges containing

the publisher’s IP addresses. For most of the clusters, the WHOIS information was shared across

most or all of the individual clusters, strongly suggesting that the publishers in the cluster share a

common owner or at least common management. The exceptions are clusters #3, #7, and #8, where

most of the WHOIS records were private (and thus labeled as “empty” in our dataset). I see similar

overlap with respect to IP address prefixes for clusters #3–5, #8, and #9, which is suggestive of

common hosting infrastructure.

Manual investigation revealed three reasons for these large clusters of publishers. First, several

clusters represent media properties with a common owner. For example, all of the publishers in

cluster #5 were owned by Vox Media. Clusters #4, #8, #9, and #10 also each appear to have a

single owner, respectively. Second, several clusters represented media platforms that host indepen-

dent publishers, including clusters #3 (LiveJournal) and #7 (UOL). Third, several clusters represent

independent publishers that happen to use consolidated SSP services. In particular, AdThrive (clus-

ter #1) and MediaVine (#2) both appear to use their own publisher IDs when selling impression

inventory, rather than having their pool of publishers all sign up for individual accounts with the ad

exchanges.

5.4.2 Seller’s Perspective

In this section, I shift perspective to focus on the sellers that are listed in ads.txt files. Sell-

ers are the most important part of an ads.txt file since the whole point of the standard is for

publishers to authorize sellers to sell their inventory.

To perform this analysis, I must first filter out the erroneous sellers that appear in ads.txt

files. As described in § 5.3.1.1, I leverage WHOIS registry data and DNS resolution to identify all

the syntactically invalid seller domains. Figure 5.6 shows the number of unique sellers I observe in

each crawl before (All line) and after (Valid line) I filter out invalid sellers. I observe that the total
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Table 5.2: Top 20 publishers with most sell-
ers. Direct and Reseller are their seller ac-
count relationships.

Alexa # Unique Valid Relationship
Publisher Rank Sellers Entries D R
arcamax.com 22565 168 3617 434 3183
breitbart.com 242 158 980 123 857
walterfootball.com 48279 148 2805 394 2411
investing.com 408 130 1551 218 1333
webconsultas.com 13730 127 2309 263 2046
shoppinglifestyle.com 72547 119 1249 155 1094
moretvtime.com 17380 118 2408 231 2177
newindianexpress.com 13028 118 1967 225 1742
americanlisted.com 53358 117 1239 146 1093
thehindu.com 1067 117 1210 127 1083
thegatewaypundit.com 8429 116 1501 217 1284
vikatan.com 6005 114 1046 168 878
flvto.biz 889 114 3490 289 3201
realgm.com 11118 112 1397 186 1211
fayerwayer.com 18578 111 1944 12 1932
publimetro.co 40324 111 1944 12 1932
pjmedia.com 16437 111 1522 140 1382
metroecuador.com.ec 27378 111 1944 12 1932
nuevamujer.com 40645 111 1944 12 1932
publimetro.com.mx 21623 111 1944 12 1932

Table 5.3: Top 20 sellers with presence on most
publishers. Publishers have either Direct, Reseller,
or Both relationships with them.

# of Relationship Avg. (Median)
Authorized Seller Publishers D R B Entries / Publisher
google.com 17771 5305 1408 11058 14.39 (4.00)
appnexus.com 12825 578 5127 7120 15.24 (8.00)
rubiconproject.com 12691 1145 4969 6577 8.35 (5.00)
openx.com 12250 652 5432 6166 13.04 (7.00)
pubmatic.com 12112 605 6345 5162 13.80 (7.00)
indexexchange.com 11347 977 4713 5657 6.22 (4.00)
contextweb.com 10405 275 7214 2916 7.97 (4.00)
spotxchange.com 10197 292 7046 2859 7.16 (4.00)
spotx.tv 9957 299 7009 2649 6.64 (4.00)
advertising.com 9819 310 6705 2804 7.48 (4.00)
sovrn.com 9146 1612 3925 3609 3.97 (2.00)
adtech.com 9110 1103 4803 3204 4.61 (3.00)
freewheel.tv 9029 170 6729 2130 23.52 (7.00)
tremorhub.com 8529 260 6955 1314 5.32 (3.00)
smartadserver.com 8401 441 5836 2124 5.67 (3.00)
districtm.io 7599 1730 2015 3854 3.23 (2.00)
lkqd.net 7300 54 5589 1657 4.78 (3.00)
aolcloud.net 7298 855 4732 1711 3.31 (2.00)
lijit.com 7100 2236 2210 2654 3.11 (2.00)
teads.tv 6757 3406 1976 1375 2.49 (2.00)
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number of sellers increases from 860 to 1,400 overtime, with the union over time containing 2,381

sellers. However, after I filter out the invalid sellers, the number of seller domains grows at a modest

rate. This result is expected since it requires significant effort for new SSPs and ad exchanges to

establish themselves in the marketplace.

The union of valid sellers overtime is 1,035 unique sellers, i.e., 56.4% of the seller domains in the

ads.txt files contained syntactic errors. I focus on these sellers for the remainder of our analysis.

Note that this set over-estimates the number of valid sellers, since it may include semantically

incorrect sellers. Figure 5.11 (discussed later) indicates that up to 20% of the unique sellers may

be erroneous due to semantic errors, however, these sellers only appear in a single ads.txt file

throughout our dataset, meaning they have very limited impact on our analysis.

Sellers Per Publisher. Next, I compare the Alexa rank of publishers versus the number of sellers
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they authorize in their ads.txt files. Figure 5.7 presents the average number of valid sellers across

bins of 1000 publishers sorted by their Alexa rank, with separate lines for our April 2018 and 2019

snapshots. We see that the average number of sellers at every rank has grown over a year: there were

∼ 10 more sellers per bin in the April 2019 snapshot as compared to April 2018. This is primarily

due to publishers forming new partnerships with existing sellers, rather than the emergence of new

sellers over time (see Figure 5.6). Additionally, I find that publishers at higher ranks have listed

more authorized sellers on average, possibly because their impression inventory is more valuable,

thus making them more desirable partners to ad exchanges.

Figure 5.8 shows the number of unique sellers listed within each publisher’s ads.txt file for

two snapshots of our crawl. I make three observations: first,∼2% of the publishers have no sellers in

their files. I manually examined these ads.txt files and found that they were either empty or just

contained comments (e.g., https://www.youtube.com/ads.txt). These empty ads.txt

files are intentionally installed by publishers since they signal to ad exchanges and DSPs that no-

body is authorized to sell their impressions. Second, the median publisher listed 17 sellers in their

ads.txt, while the top 20% of publishers listed ≥42 unique sellers in their ads.txt files. Fi-

nally, we see that the number of unique sellers per publisher has increased slightly year-over-year,

with the increases mostly concentrated amongst the publishers with the largest ads.txt files.

Table 5.2 focuses on the top 20 publishers who have listed the most unique sellers in their

ads.txt files.6 One interesting observation is that there is no correlation between Alexa rank and

unique sellers for the top 20 publishers. They do have a common theme though — they are all news

websites. Another notable observation is the difference between the number of unique sellers and

the number of valid entries per publisher. The latter is an order of magnitude greater than the former

because a publisher can have multiple publisher IDs associated with a given seller (see § 5.1.3).

This is highlighted in Figure 5.9, which compares the count of unique sellers, total publisher IDs,

and unique publisher IDs per publisher for ads.txt files in our April 2019 snapshot. We see an

order of magnitude more publisher IDs than unique sellers. This conclusion remains the same even

if I de-duplicate publisher IDs, which makes sense because duplicate publisher IDs within a given

ads.txt file would be errors.

Recall that each publisher ID associated with a seller also has a specific relationship with the

seller. This relationship can be of two types: Direct or Reseller (see § 5.1.3). For example, as shown

in Table 5.2, arcmax.com has 3,617 publisher IDs for 168 unique sellers. Out of these 3,617 IDs,

434 have a Direct relationship, meaning the publisher directly controls the given account. For the
6Others have also observed that sites like arcamax.com and breitbart.com have unusually large ads.txt files [145, 184].
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remaining 3,183 Reseller IDs, the publisher has authorized another entity to control this account

associated with the seller.

Figure 5.10 breaks down the valid entries in each publishers’ ads.txt files by relationship

type for our April 2019 snapshot. The All line is identical to Figure 5.8, and is shown here for

scale. The Only lines count cases where a publisher only has a Direct or Reseller relationship

with a seller, while the Both line counts cases where the publisher has both relationships with a

given seller. Overall, we see that Reseller relationships are most common: 25% of the publishers

have only Reseller relationships with ≥20 sellers, whereas just 2% of the publishers have only

Direct relationship with ≥20 sellers. The Both line is almost coincident with the Only Direct line,

suggesting that when a publisher has a Direct relationship with a seller, they almost always have a

Reseller relationship with that seller as well.

Seller Popularity. So far, I have looked at authorized sellers with respect to each publisher.

Now, I look at the popularity of sellers across all publishers in our dataset.

Figure 5.11 shows each sellers’ popularity in terms of (1) the total number of entries they appear

in across all publishers, and (2) the number of unique publishers they have relationships with. I

observe that 20% of the sellers are only involved with a single publisher. Some of these sellers are

semantic errors (e.g., googlesyndication.com instead of google.com), some are typos

(e.g., comgoogle.com), and some are legitimate ad networks (not exchanges, e.g., zergnet.

com) that have been added to the ads.txt file by mistake (see § 5.3.1.1). At the other extreme,

the top 25% and top 10% of sellers are listed on ≥250 and ≥1050 publishers, respectively. This

result is expected since there are powerful network effects that draw publishers to the biggest ad

exchange markets. Lastly, the top sellers have an order of magnitude more entries in comparison to

their publisher presence. This bolsters our finding that publishers tend to register multiple accounts

with top sellers.

Table 5.3 shows the top 20 sellers listed in the ads.txt files in our dataset. Unsurprisingly, the

top ad companies like Google, OpenX, and Rubicon are present in this list. google.com is the

most popular seller and is associated with 17.7K publishers. Furthermore, it appears in 14.4 entries

per ads.txt file on average. From the table, we can see that publishers tend to have both direct

and reseller relationships with the top sellers.
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5.5 Compliance

In § 5.4, I looked at how Alexa Top-100K publishers have adopted the ads.txt standard over

the course of 15-months, and which ad sellers they have authorized to sell their inventory during

RTB auctions. In this section, I take the next step and try to examine the ads.txt standard from

the ad buyers’ side. After all, one of the major goals of ads.txt is to enable ad buyers (e.g.,

DSPs) to verify the authenticity of inventory before bidding. Thus, I pose the question: are buyers

complying with the ads.txt standard by only purchasing impression inventory via authorized

sellers?

5.5.1 Isolating RTB Ads

To determine whether ad buyers are complying with the ads.txt file for a given publisher

p, I first need to identify ads that were served through RTB auctions on p. This is important since

ads.txt compliance should only matter for RTB auctions.

Using the methodology from § 5.3.1.2, I extract all inclusion chains rooted in p. Then, as

described in § 5.3.1.3, I use EasyList to identify all chains that eventually serve an ad on p. From

these ad inclusion chains, I can further isolate just the ads served via RTB using two insights. First,

I know that for an ad to be served via RTB, there must be at least 3 parties involved: the publisher,

the exchange (seller), and the DSP (buyer). Thus, I filter out all the ad inclusion chains with <

3 resources. Second, through the ads.txt dataset, I have a lower-bound estimate on all the ad

exchanges (sellers) used by Alexa Top-100K publishers (set Sv, see § 5.3.1.1). Using these 1,035

sellers, I filter out all ad inclusion chains that have zero resources from the set of valid sellers.

After applying all the filters above, I am left with 135M RTB ad inclusion chains. Although I

cannot claim that these chains capture all of the ads in our dataset served by RTB, they should cover

the ads served by authorized sellers listed in ads.txt files.

5.5.2 Compliance Verification Metrics

Now that I have isolated the inclusion chains that served RTB ads, I can investigate compliance

with the ads.txt standard by ad buyers. To this end, I create a set Rp of seller–buyer tuples (s,

b) for each publisher p. s and b are derived from RTB ad inclusion chains, such that s and b are the

2nd-level domains of the chain elements at index i and i+ 1 respectively. For example, consider an

ad inclusion chain p → e1 → e2 → e3 → d, rooted at publisher p. The last element of the chain

63



CHAPTER 5. A LONGITUDINAL ANALYSIS OF THE ADS.TXT STANDARD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F
 o

f 
P

u
b

li
s
h

e
rs

Non-Compliant Seller/Buyer Pairs (%)

Non-Weighted
Weighted
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clustered) Seller/Buyer tuples per publisher.
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Figure 5.13: Percentage of non-compliant
(clustered) Seller/Buyer tuples per publisher.

d is the DSP that ultimately served the ad. e1, e2 are both exchanges, and are present in the set of

valid authorized sellers Sv, whereas e3 6∈ Sv. In this case, I would produce the buyer–seller tuples

(e1, e2) and (e2, e3), since e2 bought and then resold the impression. Lastly, note that since I only

include tuples where s is a member of the ads.txt authorized sellers set Sv, I do not consider the

tuple (e3, d) in Rp.

I derive the set of non-compliant (s, b) tuples R?
p for p, such that s 6∈ Sp, where Sp is the set of

authorized sellers listed by p in its ads.txt file. Intuitively, the tuples in R?
p capture cases where

a seller was not authorized by the publisher to sell its inventory. Using R?
p, I calculate unweighted

compliance for p as the percentage of non-compliant tuples over the total tuples 100 ∗ |R?
p|/|Rp|.

However, this metric is not necessarily fair, since it does not take into account the relative frequency

that sellers–buyer pairs appear in the ad inclusion chains. To account for frequency, I also calculate

weighted compliance as
∑
∀i∈R?

p
f(i)/

∑
∀j∈Rp

f(j), where f(t) is the number of times tuple t

appears in RTB ad inclusion chains on p.

5.5.3 Results

Figure 5.12 show the percentage of non-compliant tuples per publisher in our April 2019 snap-

shot. We notice that for both unweighted and weighted, very few publishers experience high-

compliance with respect to their impression inventory. Only 2% of the publishers have 0% non-

compliance. Conversely, ≥90% of publishers experience non-compliance for the majority of their

(s, b) tuples. Additionally, ≥50% of publishers have 100% non-compliant tuples. Given that

ads.txt was introduced in 2017 [167] and is being pushed forcefully by major exchanges like

Google [89], I was surprised by the lack of compliance.
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Table 5.4: Top 20 non-compliant Seller-Buyer pairs, sorted by presence on number of unique
publishers.

Seller Buyer # Publishers (%) Total Chains (%)
gumgum domdex 247 20.38 280 16.25
gumgum appnexus 225 20.49 237 20.10
taboola weborama 188 52.66 190 51.77
taboola rubiconproject 154 11.55 404 11.31
dailymotion dyntrk 148 51.21 1296 42.99
taboola indexexchange 144 11.61 190 11.59
gumgum pubmatic 139 27.25 480 28.27
justpremium openx 138 100.00 936 100.00
criteo media 120 74.53 454 77.47
rubiconproject yahoo 120 2.63 120 2.63
criteo yieldlab 105 78.36 756 80.51
taboola pubmatic 104 12.87 512 12.41
springserve pubmatic 103 49.28 4668 53.84
exponential google 101 31.46 1700 20.83
criteo ligadx 98 77.78 502 83.11
criteo pubmatic 84 82.35 415 78.60
nativeroll weborama 81 100.00 647 100.00
nativeroll seedr 78 100.00 464 100.00
aniview google 76 84.44 5047 82.21
yandex google 65 98.48 1744 97.76

To understand the high non-compliance rate, I manually looked at the most frequent non-

compliant tuples. One of the most non-compliant sellers was doubleclick.net, which illus-

trates a deficiency in my analysis thus far. Recall that Google specifies that google.com is the

correct seller domain to place in ads.txt files. This causes us to incorrectly mark sellers like

DoubleClick as non-compliant since the domain is not explicitly listed in ads.txt files.

Clustering Domains. To tackle this issue, I clustered domains together that belong to the same

organization using data provided by WhoTracksMe [192]. This dataset is gathered by Cliqz, which

is a German company that develops privacy-preserving web browser and extensions [40].7 This

dataset contains mappings for 28 parent domains, including Google, OpenX, Rubicon Project, etc.

Using this dataset, I map the domains that appear in our RTB ad inclusion chains to their parent

domain and re-plot the non-compliance in Figure 5.13. This changed the results dramatically. The

percentage of publishers with complete compliance rises from 2% in the non-clustered case to 70%

in the clustered case. Furthermore, only 3% of publishers experience 100% non-compliance instead

of 50%. Compliance rises even further when I filter out (s, b) tuples where s = b, i.e., the same

domain appears adjacent to itself in the ad inclusion chain. Overall, I can conclude that the vast

majority of RTB ads in our dataset appear to have been served by buyers who were in compliance

with publishers’ ads.txt files.

7I provide the list of clustered domains along with their parent domains on https://www.ccs.neu.edu/home/ahmad/
thesis/files/clustered_for_adstxt.json.
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Table 5.5: Percentage of ads.txt-enabled publish-
ers on top sellers.

Seller % Publishers w/ ads.txt # Publishers w/ RTB Ads
google 58.64 23552
advertising 75.46 7196
pubmatic 79.53 6800
rubiconproject 88.37 5562
openx 91.18 3173
appnexus 91.71 3150
sovrn 90.61 2279
indexexchange 88.98 1915
teads 93.99 1232
smartadserver 92.17 1085

Distance. One interesting question is when do non-compliant ad auctions occur in the inclusion

chains?, i.e., in the seller that directly receives the impression from the publisher, or farther down

the chain? Figure 5.14 shows the average distance of the buyer from the very first authorized seller

for complaint and non-compliant tuples. We observe a clear separation between the lines, with

non-compliant buyers tending to be one hop farther away from the first seller than complaint buyers

on average. This confirms our intuition that compliance with the ads.txt standard tends to be

stronger earlier in chains when top sellers are typically conducting the auctions. In contrast, as the

chain length grows, less reputable buyers and sellers become involved, and compliance wanes.

Non-Compliant Sellers. Next, I take a deeper look into the seller and buyer domains from the

non-compliant tuples. Table 5.4 shows the top 20 non-compliant tuples across all publishers, after

clustering them by their parent domains. For each tuple, I show the total number and percentage of

publishers it was non-compliant on. Table 5.4 also shows the total number and percentage of times

the tuple was non-compliant across all publishers.

With respect to the non-compliant sellers, several companies appear to be systematically non-

compliant, such as NativeRoll, GumGum, Criteo, and JustPremium. Only one of the top authorized

sellers from Table 5.3 (Rubicon Project) appears on the list. However, it is only non-compliant

with a single buyer and only in 2.6% of transactions in our dataset. This finding suggests that top

authorized sellers like Google and OpenX are enforcing compliance with the ads.txt standard

within their markets.

One possibility is that top sellers are only auctioning impression inventory that can be validated,

i.e., from publishers with ads.txt files. However, this is not the case: Table 5.5 shows (1) the

number of publishers in our dataset that had RTB ad inclusion chains with the given seller, and (2)

the percentage of these publishers that had ads.txt files. For example, only 59% of the publishers
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in our dataset whose impression inventory moved through Google’s exchange had an ads.txt file.

This demonstrates that all of the top sellers are, to some extent, still auctioning inventory that cannot

be validated using ads.txt.

A second possibility is that top sellers are faithfully following the ads.txt standard by refus-

ing to auction unauthorized impressions. Although our data suggest that this might be the case, I

cannot guarantee this from observational data alone. I attempted to become a publisher to conduct

controlled experiments to test compliance with the ads.txt standard, but I was unable to do so.8

Non-Compliant Buyers. With respect to non-compliant buyers, the striking feature of Table 5.4

is that most are actually SSPs/ad exchanges, including eight of the top authorized sellers from

Table 5.3. In other words, top DSPs seem to be following the ads.txt standard by not buying

non-compliant inventory. Rather, sellers are buying non-compliant inventory, although the reason

for this is unclear since it seems unlikely that they are able to resell this non-compliant inventory at

auction. Many of these companies offer seller- and buyer-side products, so it is possible that they

are purchasing this non-compliant inventory and then serving ads, rather than reselling. Still, this

behavior is surprising given that many of these companies have called for strict enforcement of the

ads.txt standard [16, 81, 148, 169].

5.6 Summary

In this chapter, I presented the first large-scale, longitudinal study of the ads.txt standard.

Using data crawled from 240K websites over a period of 15-months, I examined the adoption of

ads.txt by publishers, the contents of these files, the characteristics of sellers (ad exchanges)

who appear in the files, and compliance with the standard by sellers and buyers.

Transparency. One of the motivating questions of this study was how useful is ads.txt as a

transparency mechanism? The answer to this question is mixed. On the positive side, ads.txt is

enjoying wide adoption. For the first time ever, publishers are explicitly declaring who they have

advertising contracts with. Further, by aggregating across ads.txt files, it is possible to compile

an explicit and extensive list of seller-side advertising platforms. Additionally, coupled with inclu-

sion chain data, buyer-side platforms can also be identified. These datasets are extremely useful for

measurement studies of the online ad ecosystem, which historically have had to rely on heuristics or

crowdsourced data (e.g., EasyList) to identify these domains. Additionally, this data may be useful

8All of the ad exchanges I contacted refused to engage with me unless my website received on the order of millions of unique visitors
per month.
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for browser extensions that inform users about the advertising practices of publishers [145] or block

ads. The list of ad exchanges from this dataset completes an important piece of this dissertation,

and I use it in chapter 6 to model how user impressions are propagated in the ad ecosystem via these

exchanges.

However, there are several caveats to the ads.txt data. First, as we saw throughout this study,

ads.txt files contain various classes of errors that must be mitigated by consumers of the data.

Fortunately, I develop techniques in this study that can help in this regard. Second, ads.txt is only

designed to make advertising domains transparent, not tracking domains. Additional datasets and

detection techniques are still necessary to identify trackers. Finally, I note that the seller domains

listed in ads.txt files are not all-inclusive; additional, manual work is required to map seller

domains like google.com to all of the other domains used by sellers.

Compliance. The other motivating questions behind this study was are members of the online

ad ecosystem complying with the ads.txt standard? Here again, the answer is somewhat mixed.

With respect to adoption, I found that over 60% of popular publishers that are monetized via RTB

ads have adopted ads.txt, which is impressive for a standard that is just over two years old (as

of this writing). Further, our analysis of ad inclusion chains strongly suggests that SSPs and ad

exchanges are honoring the standard by not attempting to sell unauthorized inventory. Future work

should attempt to validate this using causal experiments.

That said, there is a great deal of room for improvement before domain spoofing will be erad-

icated. There are still many publishers that have not adopted ads.txt, and their impression in-

ventory continues to be purchased from SSPs/ad exchanges. All of these domains are vulnerable to

spoofing. Additionally, I do observe specific sellers that continue to sell impressions that they are

not authorized to sell, as well as specific buyers (including many top ad exchanges) who continue

to purchase impressions from these unauthorized sellers. All of these companies run the risk of

introducing spoofed inventory into the marketplace.
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Chapter 6

Diffusion of User Tracking Data in the

Online Advertising Ecosystem

The rise of Real Time Bidding (RTB) has forced Advertising and Analytics (A&A) companies

to collaborate more closely with one another, in order to exchange data about users and facilitate

bidding on impressions [21, 147]. In § 1.1, I explained that user information can be shared under

RTB via two primary means: (1) A&A domains actively share user identifiers with each other

through cookie matching to facilitate RTB, and (2) ad exchanges disperse tracking information to

multiple DSPs during RTB auctions to solicit bids for user impressions. The primary goal of my

dissertation is to study the privacy implications of RTB so that we can better understand the privacy

digital footprint of the user in the modern ad ecosystem.

In chapter 4, I proposed a generic methodology to detect information-sharing among A&A

domains which facilitate RTB auctions. And, in chapter 5, I conduct a measurement study of the

ads.txt transparency standard to collect a list of ad exchanges involved in selling impressions

during RTB auctions. Now, we are ready to use these results to come up with a model that captures

the effect of RTB on users’ privacy. However, due to the enormous complexity of the ad ecosystem

and close collaboration among A&A domains, we cannot accurately determine the extent of privacy

leakage if we look at RTB auctions in isolation.

A natural way to model this complex ecosystem is in the form of a graph. Graph models that ac-

curately capture the relationships between publishers and A&A companies are extremely important

for practical applications, such as estimating revenue of A&A companies [74], predicting whether

a given domain is a tracker [102], or evaluating the effectiveness of domain-blocking strategies on
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preserving users’ privacy.

However, to date, technical limitations have prevented researchers from developing accurate

graph models of the online advertising ecosystem. For example, Gomer et al. [78] propose a Referer

graph, where nodes represent publishers or A&A domains, and two nodes ai and aj are connected if

an HTTP message to aj is observed with ai as the HTTP Referer. Unfortunately, as I will show,

graphs built using Referer information may contain erroneous edges in cases where a third-party

script is embedded directly into a first-party context (i.e., is not sandboxed in an iframe).

In this chapter, I use the data collected from the methodology proposed in chapter 4, and the list

of ad exchanges from ads.txt standard in chapter 5 to model the diffusion of user tracking data

within RTB auctions. In particular, I propose a novel and accurate representation of the advertising

graph called an Inclusion graph. The Inclusion graph corrects the technical problem of the Referer

graph by using the actual inclusion relationships between domains to represent edges, rather than

imprecise Referer relationships. I am able to construct Inclusion graphs, thanks to the advances

in browser instrumentation that allow researchers to conduct web crawls, including the ones in

chapter 4 and chapter 5, that record the exact provenance of all HTTP(S) requests [17, 21, 112].

I use crawled data from chapter 4, consisting of around 2M impressions from popular e-commerce

websites to construct the Inclusion graph. In § 6.3, I examine the fundamental graph properties of

the Inclusion graph and compare it to a Referer graph, created using the same dataset to under-

stand their salient differences. In § 6.4, I demonstrate a concrete use case for the Inclusion graph

by using simulations to model the flow of tracking data to A&A companies. Furthermore, I com-

pare the efficacy of different real-world and graph-theoretic “blocking” strategies (e.g., AdBlock

Plus [7], Ghostery [73], and Disconnect [52]) at reducing the flow of tracking information to A&A

companies.

Overall, in this chapter, I make the following key contributions:

• I introduce the Inclusion graph as a model for capturing the complexity of the online advertis-

ing ecosystem. I use the Inclusion graph as a substrate for modeling the flow of impressions

to A&A companies by taking into account the browsing behavior of users and the dynamics

of RTB auctions.

• I find that the Inclusion graph has substantive differences in graph structure compared to the

Referer graph because 48.4% of resource inclusions in our crawled data have an inaccurate

Referer.

• Through simulations, I find that top 10% of A&A domains are each able to observe more than

70



CHAPTER 6. DIFFUSION OF USER TRACKING DATA

90% of an average user’s impressions as they browse, under modest assumptions about data

sharing in RTB auctions. This includes expected companies like Google and unexpected ones

like Pinterest. 636 A&A domains can observe at least 50% of an average user’s impressions.

Even under the strictest simulation assumptions, the top 10 A&A domains observe 89-99%

of all user impressions.

• I simulate the effect of five blocking strategies and find that AdBlock Plus (the world’s most

popular ad-blocking browser extension [122, 159], is ineffective at protecting users’ privacy

because major ad exchanges are whitelisted under the Acceptable Ads program [190]. In

contrast, Disconnect blocks the most information flows to A&A companies, followed by the

removal of top 10% A&A nodes. However, even with strong blocking, major A&A companies

still observe 40–80% of user impressions.

6.1 Related Work on Graph Models

In this section, I will briefly go over prior work that modeled the advertising ecosystem as a

graph. There are mainly two different models that have been proposed; a Referer graph by Gomer et

al. [78] and a Co-occurrence graph by Kalavri et al. [102].

Gomer et al. [78] built and analyzed graphs of the ad ecosystem by making use of the Referer

field from HTTP requests. In this representation, a relationship di → dj exists if there is an HTTP

request to domain dj with a Referer header from domain di. While the Referer graph provided

interesting insights into the structure of the ad ecosystem, its referral-based representation has a

significant limitation. As I describe in § 6.2.2, relying on the HTTP Referer does not always capture

the correct relationships between A&A parties, thus leading to incorrect graphs of the ad ecosystem.

I re-create this graph representation using our dataset (see § 6.2.2) and compare its properties to a

more accurate representation I propose in § 6.3.

Kalavri et al. [102] created a bipartite graph of publishers and associated A&A domains, then

transformed it to create an undirected graph consisting solely of A&A domains. In their repre-

sentation, two A&A domains are connected if they were included by the same publisher. This

construction leads to a highly dense graph with many complete cliques. Kalavri et al. leveraged

the tight community structure of A&A domains to predict whether new, unknown URLs belong to

A&A domains or not. However, this co-occurrence representation has a conceptual shortcoming: it

may include edges between A&A domains that do not directly communicate or have any business

relationship with. Due to this shortcoming, I do not explore this graph representation in my work.
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6.2 Methodology

My goal is to capture the most accurate representation of the online advertising ecosystem,

which will then allow me to model the effect of RTB on the diffusion of user tracking data. In

this section, I introduce the dataset used in this study and describe how I use it to build a graph

representation of the ad ecosystem.

6.2.1 Dataset

In this study, I use the dataset from chapter 4, where the goal was to causally infer the information-

sharing relationships between A&A domains by (1) crawling products from popular e-commerce

websites and then (2) observing corresponding retargeted ads on publishers. There, I conducted

web crawls that covered 738 major e-commerce websites (e.g., Amazon)1, and 150 popular pub-

lishers (e.g., CNN)2 manually chosen from the Alexa Top-1K. I first crawled 10 manually selected

products per e-commerce site to signal strong intent to trackers and advertisers, and then crawl 15

randomly chosen pages per publisher to elicit display ads. In total, I repeated the entire crawl nine

times and collected around 2M impressions.

Inclusion Trees. This data was collected using a specially instrumented version of Chromium

(see § 4.1.2). This tool allows us to record the inclusion tree for each webpage, which is a data

structure that captures the semantic relationships between elements in a webpage (as opposed to

the DOM, which captures syntactic relationships) [17, 112]. The crawler also recorded all HTTP

request and response headers associated with each visited URL.

To illustrate the importance of inclusion trees, consider the example webpage shown in Fig-

ure 6.1(a). The DOM shows that the page from publisher p ultimately includes resources from four

third-party domains (a1 through a4). It is clear from the DOM that the request to a3 is responsible

for causing the request to a4, since the script inclusion is within the iframe. However, it is

not clear which domain generated the requests to a2 and a3: the img and iframe could have been

embedded in the original HTML from p, or these elements could have been created dynamically by

the script from a1. Although the HTML comment gives us a clue about the provenance of a2,

this information is not captured in the DOM, nor is it obvious how to programmatically extract this

information. In this case, the inclusion tree shown in Figure 6.1(b) reveals that the image from

a2 was dynamically created by the script from a1, while the iframe from a3 was embedded

1http://www.alexa.com/topsites/category/Top/Shopping
2For simplicity, I refer to these e-commerce websites as publishers, to distinguish them from A&A domains.
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(a) DOM Tree for http://p.com/index.html

<html>
    <body>
        <script src=”a1.com/cookie-match.js”></script>
        <!-- Tracking pixel inserted dynamically 
               by cookie-match.js -->
        <img src=”a2.com/pixel.jpg”/>

        <iframe src=”a3.com/banner.html”>
            <script src=”a4.com/ads.js”></script>
        </iframe>
    </body>
</html>

(d) Referer Graph(c) Inclusion Graph

a1

a2

a4

a1 a2

a4a3

(b) Inclusion Tree

p.com/index.html

a1.com/cookie-match.js

a2.com/pixel.jpg

a3.com/banner.html

a4.com/ads.js

p

a3

p
Publisher
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Figure 6.1: An example HTML document and the corresponding inclusion tree, Inclusion graph,
and Referer graph. In the DOM representation, the a1 script and a2 img appear at the same
level of the tree; in the inclusion tree, the a2 img is a child of the a1 script because the latter
element created the former. The Inclusion graph has a 1:1 correspondence with the inclusion tree.
The Referer graph fails to capture the relationship between the a1 script and a2 img because
they are both embedded in the first-party context, while it correctly attributes the a4 script to the
a3 iframe because of the context switch.

directly in the HTML from p. Note that if Referer headers had been used instead, the request to

a2 would have been misattributed to p, since a1’s JavaScript is included in the first-party context.

Cookie Matching. The dataset also includes labels on edges of the inclusion trees, indicating

cases where cookie matching is occurring. These labels are derived from heuristics (e.g., string

matching to identify the passing of cookie values in HTTP parameters) and causal inferences based

on the presence of retargeted ads. In total, our dataset includes 200 empirically validated pairs of

A&A domains that match cookies. I use these pairs in § 6.4 to constrain some of the simulations in

my models.

6.2.2 Graph Construction

A natural way to model the online ad ecosystem is by using a graph. In this model, nodes

represent A&A domains, publishers, or other online services. Edges capture relationships between

these actors, such as resource inclusion or information flow (e.g., cookie matching).
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Canonicalizing Domains. I use the data described in § 6.2.1 to construct a graph for the online

advertising ecosystem. I use effective 2nd-level domain names to represent nodes. For example,

x.doubleclick.net and y.doubleclick.net are represented by a single node labeled

doubleclick. Throughout this study, when I say “domain”, I am referring to an effective 2nd-

level domain name.3

Simplifying domains to the effective 2nd-level is a natural encoding for advertising data. Con-

sider two inclusion trees generated by visiting two publishers: publisher p1 forwards the impression

to x.doubleclick.net and then to advertiser a1. Publisher p2 forwards to y.doubleclick.net

and advertiser a2. This does not imply that x.doubleclick and y.doubleclick only sell

impressions to a1 and a2, respectively. In reality, DoubleClick is a single auction, regardless of the

subdomain, and a1 and a2 have the opportunity to bid on all impressions. Individual inclusion trees

are snapshots of how one particular impression was served; only in aggregate can all participants

in the auctions be enumerated. Further, 3rd-level domains may read 2nd-level cookies without vi-

olating the Same Origin Policy [135]: x.doubleclick.com and y.doubleclick.com may

both access cookies set by .doubleclick, and do so in practice.

The sole exception to the domain canonicalization process is Amazon’s Cloudfront Content

Delivery Network (CDN). I routinely observed Cloudfront hosting ad-related scripts and images in

the data. I manually examined the 50 fully-qualified Cloudfront domains that were pre- or proceeded

by A&A domains in the data and mapped each one to the corresponding A&A domain. For example,

d31550gg7drwar.cloudfront.net gets mapped to adroll.

Inclusion graph. I propose a novel representation called an Inclusion graph that is the union

of all inclusion trees in our dataset. This representation is a directed graph of publishers and A&A

domains. An edge di → dj exists if we have ever observed domain di including a resource from dj .

Edges may exist from publishers to A&A domains, or between A&A domains. Figure 6.1(c) shows

an example Inclusion graph.

Referer graph. Gomer et al. [78] also proposed a directed graph representation consisting of

publishers and A&A domains for the online advertising ecosystem. In this representation, each

publisher and A&A domain is a node, and edge di → dj exists if we have ever observed an HTTP

request to dj with Referer di. Figure 6.1(d) shows an example Referer graph corresponding to the

given webpage. Our dataset also includes all HTTP request and response headers from the crawl,

and we use these to construct the Referer graph.

3None of the publishers and A&A domains in our dataset have two-part TLDs, like .co.uk, which simplifies the analysis.
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Although the Referer and Inclusion graphs seem similar, they are fundamentally different for

technical reasons. Consider the examples shown in Figure 6.1: the script from a1 is included

directly into p’s context, thus p is the Referer in the request to a2. This results in a Referer graph

with two edges that does not correctly encode the relationships between the three parties: p → a1

and p → a2. In other words, HTTP Referer headers are an indirect method for measuring the

semantic relationships between page elements, and the headers may be incorrect depending on the

syntactic structure of a page. The Inclusion graph representation fixes the ambiguity in the Referer

graph by explicitly relying on the inclusion relationships between elements in webpages. I analyze

the salient differences between the Referer and Inclusion graph in § 6.3.

Weights. Additionally, I also create a weighted version of these graphs. In the Inclusion graph,

the weight of di → dj encodes the number of times a resource from di sent an HTTP request to dj .

In the Referer graph, the weight of di → dj encodes the number of HTTP requests with Referer

di and destination dj .

6.2.3 Detection of A&A Domains

For us to understand the role of A&A companies in the advertising graph, we must be able to

distinguish A&A domains from publishers and non-A&A third parties like CDNs. In the inclusion

trees in our dataset, each resource is labeled as A&A or non-A&A using the EasyList [54] and

EasyPrivacy [55] rule lists. For all the A&A labeled resources, I extract the associated 2nd-level

domains. To eliminate false positives, I only consider a 2nd-level domain to be A&A if it was

labeled as A&A more than 10% of the time in the dataset.

6.2.4 Coverage

There are two potential concerns with the raw data I use in this study: does the data include

a representative set of A&A domains? and does the data contain all of the outgoing edges associ-

ated with each A&A domain? To answer the former question, I plot Figure 4.2 (see § 4.1), which

shows the overlap between the top x A&A domains in our dataset (ranked by inclusion frequency

by publishers) with all of the A&A domains included by the Alexa Top-5K websites.4 I observe

that 99% of the 150 most frequent A&A domains appear in both samples, while 89% of the 500

most frequent appear in both. These findings confirm that our dataset includes the vast majority of

prominent A&A domains that users are likely to encounter on the web.

4Our dataset and the Alexa Top-5K data were both collected in December 2015, so they are temporally comparable.
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Table 6.1: Basic statistics for Inclusion and Referer graph. I show sizes for the largest WCC in
each graph. † denotes that the metric is calculated on the largest SCC. ‡ denotes that the metric is
calculated on the undirected transformation of the graph.

Avg. Deg. Avg. Path Cluster. Degree
Graph Type |V| |E| |VWCC| |EWCC| (In Out) Length Coef. S∆ [93] Assort.
Inclusion 1917 26099 1909 26099 13.612 13.612 2.748† 0.472‡ 31.254‡ -0.31‡

Referer 1923 41468 1911 41468 21.564 21.564 2.429† 0.235‡ 10.040‡ -0.29‡

To answer the second question, I plot Figure 4.3 (see § 4.1), which shows the number of unique

external A&A domains contacted by A&A domains in our dataset as the crawl progressed (i.e.,

starting from the first page crawled, and ending with the last). Recall that the dataset was collected

over nine consecutive crawls spanning two weeks, each of which visited 9,630 individual pages

spread over 888 domains.

I observe that the number of A&A →A&A edges rises quickly initially, going from 0 to 800

in 3,600 crawled pages. Then, the growth slows down, requiring an additional 12,000 page visits

to increase from 800 to 900. In other words, almost all A&A edges were discovered by half-way

through the very first crawl; eight subsequent iterations of the crawl only uncovered 12.5% more

edges. This demonstrates that the crawler reached the point of diminishing returns, indicating that

the vast majority of connections between A&A domains that existed at the time are contained in the

dataset.

6.3 Graph Analysis

In this section, I look at the essential graph properties of the Inclusion graph. This sets the stage

for a higher-level evaluation of the Inclusion graph in § 6.4.

6.3.1 Basic Analysis

I begin by discussing the basic properties of the Inclusion graph, as shown in Table 6.1. For

reference, I also compare the properties with those of the Referer graph.

Edge Misattribution in the Referer graph. The Inclusion and Referer graph have essentially

the same number of nodes, however, the Referer graph has 159% more edges. I observe that 48.4%

of resource inclusions in the raw dataset have an inaccurate Referer (i.e., the first-party is the

Referer even though the resource was requested by third-party JavaScript), which is the cause for

additional edges in the Referer graph.
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There is a massive shift in the location of edges between the Inclusion and the Referer graph:

the number of publisher→A&A edges decreases from 33,716 in the Referer graph to 10,274 in the

Inclusion graph, while the number of A&A →A&A edges increases from 7,408 to 13,546. In the

Referer graph only 3% of A&A →A&A edges are reciprocal, versus 31% in the Inclusion graph.

Taken together, these findings highlight the practical consequences of misattributing edges based on

Referer information, i.e., relationships between A&A companies that should be in the core of the

network are incorrectly attached to publishers along the periphery.

Structure and Connectivity. As shown in Table 6.1, the Inclusion graph has large, well-

connected components. The largest Weakly Connected Component (WCC) covers all but eight

nodes in the Inclusion graph, meaning that very few nodes are completely disconnected. This

highlights the inter-connectedness of the ad ecosystem. The average node degree in the Inclusion

graph is 13.6, and <7% of the nodes have in- or out-degree≥50. This result is expected: publishers

typically only form direct relationships with a small number of SSPs and exchanges, while DSPs

and advertisers only need to connect to the major exchanges. The small number of high-degree

nodes are ad exchanges, ad networks, trackers (e.g., Google Analytics), and CDNs.

The Inclusion graph exhibits a low average shortest path length of 2.7, and a very high aver-

age clustering coefficient of 0.48, implying that it is a “small world” graph. I show the “small-

worldness” metric S∆ in Table 6.1, which is computed for a given undirected graph G and an

equivalent random graph GR
5 as S∆ = (C∆/C∆

R )/(L∆/L∆
R), where C∆ is the average cluster-

ing6 coefficient, and L∆ is the average shortest path length [93]. The Inclusion graph has a large

S∆ ≈ 31, confirming that it is a “small world” graph.

Lastly, Table 6.1 reveals that both Inclusion and Referer graphs are disassortative (i.e., low

degree nodes tend to connect to high degree nodes).

Change Over Time. Our Referer graph exhibits interesting differences compared to the Referer

graph examined by Gomer et al. [78], which I constructed based on crawled data from 2013. Specif-

ically, Referer graph constructed by me has higher average node degree (21.728 vs. 8.796), higher

average clustering coefficient (0.239 vs. 0.196), and lower average shortest path lengths (2.429 vs.

3.673).7 This demonstrates that the ad network graph is densifying over time.

Summary. My measurements demonstrate that the structure of the ad network graph is troubling

5Equivalence in this case means that for G and GR, |V | = |VR| and |E|/|V | = |ER|/|VR|.
6I compute the average clustering by transforming directed graphs into undirected graphs, and compute average shortest path lengths

on the SCC.
7To ensure a fair comparison, I compare my Referer graph to the U.S.-based Referer graph from [78].

77



CHAPTER 6. DIFFUSION OF USER TRACKING DATA

 0

 400

 800

 1200

 1600

 2000

 0  10  20  30  40  50  60  70

|W
C

C
|

k

Figure 6.2: k-core: size of the Inclusion graph WCC as nodes with degree ≤ k are recursively
removed.

from a privacy perspective. Short path lengths and high clustering between A&A domains suggest

that the data tracked from users will spread rapidly to all participants in the ecosystem (I examine

this in more detail in § 6.4). This rapid spread is facilitated by high-degree hubs in the network that

have disassortative connectivity, which we examine in the next section. Furthermore, comparisons

with historical graphs collected in 2013 suggest that the ad network is getting denser, with more

connections between A&A domains. This suggests that the user data can spread more widely and

more quickly than in the past, which is also concerning.

6.3.2 Cores and Communities

I now examine how nodes in the Inclusion graph connect to each other using two metrics: k-

cores and community detection. The k-core of a graph is the subset of a graph (nodes and edges)

that remain after recursively removing all nodes with degree ≤ k. By increasing k, the loosely

connected periphery of a graph can be stripped away, leaving just the dense core. In our scenario,

this corresponds to the high-degree ad exchanges, ad networks, and trackers that facilitate the con-

nections between publishers and advertisers.

Figure 6.2 plots k versus the size of the WCC for the Inclusion graph. The plot shows that the

core of the Inclusion graph rapidly declines in size as k increases, which highlights the interdepen-

dence between A&A domains and the lack of a distinct core.

Next, to examine the community structure of the Inclusion graph, I utilized three different com-

munity detection algorithms: label propagation by Raghavan et al. [161], Louvain modularity max-

imization [26], and the centrality-based Girvan-Newman [75] algorithm. I chose these algorithms

because they attempt to find communities using fundamentally different approaches.

Unfortunately, after running these algorithms on the largest WCC, the results of my community-

detection analysis were negative. Label propagation clustered all nodes into a single community.
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Table 6.2: Top 10 nodes ranked by betweenness centrality and weighted PageRank in the Inclusion
graph.

Betweenness Centrality Weighted PageRank
google-analytics doubleclick

doubleclick googlesyndication
googleadservices 2mdn

facebook adnxs
googletagmanager google
googlesyndication adsafeprotected

adnxs google-analytics
google scorecardresearch
addthis krxd

criteo rubiconproject

Louvain found 14 communities with an overall modularity score of 0.44 (on a scale of -1 to 1 where

1 is entirely disjoint clusters). The largest community contains 771 nodes (40% of all nodes) and

3252 edges (12% of all edges). Out of 771 nodes, 37% are A&A. However, none of the 14 com-

munities corresponded to meaningful groups of nodes, either segmented by type (e.g., publishers,

SSPs, DSPs, etc.) or segmented by ad exchange (e.g., customers and partners centered around Dou-

bleClick). This is a known deficiency in modularity maximization based methods, that they tend

to produce communities with no real-world correspondence [13]. Girvan-Newman found 10 com-

munities, with the largest community containing 1,097 nodes (57% of all nodes) and 16,424 edges

(63% of all edges). Out of 1,097 nodes, 64% are A&A. However, the modularity score was zero,

which means that the Girvan-Newman communities contain a random assortment of internal and

external (cross-cluster) edges.

These results show exactly how challenging it is to determine the role of A&A domains, and that

is the reason why I utilized ads.txt standard in chapter 5 to isolate a list for A&A domains which

act as ad exchanges. Overall, these results demonstrate that the web display ad ecosystem is not

balkanized into distinct groups of companies and publishers that partner with each other. Instead,

the ecosystem is highly interdependent, with no clear delineations between groups or types of A&A

companies. This result is not surprising considering how dense the Inclusion graph is.

6.3.3 Node Importance

In this section, I focus on the importance of specific nodes in the Inclusion graph using two

metrics: betweenness centrality and weighted PageRank. As before, I focus on the largest WCC.

The betweenness centrality for a node n is defined as the fraction of all shortest paths on the graph
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that traverse n. In our scenario, nodes with high betweenness centrality represent the key pathways

for tracking information and impressions to flow from publishers to the rest of the ad ecosystem.

For weighted PageRank, I weight each edge in the Inclusion graph based on the number of times

we observe it in our raw data. In essence, weighted PageRank identifies the nodes that receive the

largest amounts of tracking data and impressions throughout each graph.

Table 6.2 shows the top 10 nodes in the Inclusion graph based on betweenness centrality and

weighted PageRank. Prominent online advertising companies are well represented, including App-

Nexus (adnxs), Facebook, and Integral Ad Science (adsafeprotected). Similar to prior work, I find

that Google’s advertising domains (including DoubleClick and 2mdn) are the most prominent over-

all [78]. Unsurprisingly, these companies all provide platforms, i.e., SSPs, ad exchanges, and ad

networks. We also observe trackers like Google Analytics and Tag Manager. Interestingly, among

14 unique domains across the two lists, ten only appear in a single list. This suggests that the most

important domains in terms of connectivity are not necessarily the ones that receive the highest

volume of HTTP requests.

6.4 Information Diffusion

In § 6.3, I examined the descriptive characteristics of the Inclusion graph and discussed the

implications of this graph structure on our understanding of the online advertising ecosystem. In

this section, I take the next step and present a concrete use case for the Inclusion graph: modeling

the diffusion of user tracking data across the ad ecosystem under different types of ad and tracker

blocking (e.g., AdBlock Plus and Ghostery). I model the flow of information across the Inclusion

graph, taking into account different blocking strategies, as well as the design of RTB systems and

empirically observed transition probabilities from our crawled dataset.

6.4.1 Simulation Goals

Simulations are an important tool for helping to understand the dynamics of the (otherwise

opaque) online advertising industry. For example, Gill et al. used data-driven simulations to model

the distribution of revenue amongst online display advertisers [74].

Here, I use simulations to examine the flow of browsing history data to trackers and advertisers.

Specifically, I ask:

1. How many user impressions (i.e., page visits) on publishers can each A&A domain observe?
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2. What fraction of the unique publishers that a user visits can each A&A domain observe?

3. How do different blocking strategies impact the number of impressions and fraction of pub-

lishers observed by each A&A domain?

These questions have direct implications for understanding users’ online privacy. The first two

questions are about quantifying a user’s online digital footprint, i.e., how much of their browsing

history can be recorded by different companies. In contrast, the third question investigates how well

different blocking strategies perform at protecting users’ privacy.

6.4.2 Simulation Setup

To answer these questions, I simulate the browsing behavior of users using the model provided

by Burklen et al. [31].8 In particular, I simulate a user browsing publishers over discreet time steps.

At each time step our simulated user decides whether to remain on the current publisher according to

a Pareto distribution (exponent = 2), in which case they generate a new impression on that publisher.

Otherwise, the user browses to a new publisher, which is chosen based on a Zipf distribution over

the Alexa ranks of the publishers. Burklen et al. developed this browsing model based on large-scale

observational traces, and derive the distributions and their parameters empirically. This browsing

model has been successfully used to drive simulated experiments in other work [111].

I generated browsing traces for 200 users. On average, each user generated 5,343 impressions

on 190 unique publishers. The publishers are selected from the 888 unique first-party websites in

our dataset (see § 6.2.1).

During each simulated time step the user generates an impression on a publisher, which is then

forwarded to all A&A domains that are directly connected to the publisher. This emulates a webpage

with multiple slots for display ads, each of which is serviced by a different SSP or ad exchange.

However, it is insufficient to simply forward the impression to the A&A domains directly connected

to each publisher; we must also account for ad exchanges and RTB auctions [21, 147], which may

cause the impression to spread farther on the graph. I discuss this process next. The simulated

time step ends when all impressions arrive at A&A domains that do not forward them. Once all

outstanding impressions have terminated, time increments and our simulated user generates a new

impression, either from their currently selected publisher or from a new publisher.

8To the best of my knowledge, there are no other empirically validated browsing models besides [31].
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6.4.2.1 Impression Propagation

Our simulations must account for direct and indirect propagation of impressions. Direct flows

occur when one A&A domain sells or redirects an impression to another A&A domain. I refer to

these flows as “direct” because they are observable by the web browser, and are thus recorded in our

dataset. Indirect flows occur when an ad exchange solicits bids on an impression. The advertisers

in the auction learn about the impression, but this is not directly observable to the browser; only the

winner is ultimately known.

Direct Propagation. To account for direct propagation, I assign a termination probability to

each A&A node in the Inclusion graph that determines how often it serves an ad itself, versus

selling the impression to a partner (and redirecting the user’s browser accordingly). I derive the

termination probability for each A&A node empirically from our dataset. When an impression is

sold, I determine which neighboring node purchases the impression based on the weights of the

outgoing edges. For a node ai, I define its set of outgoing neighbors as No(ai). The probability of

selling to neighbor aj ∈ No(ai) is w(ai → aj)/
∑
∀ay∈No(ai)

w(ai → ay), where w(ai → aj) is

the weight of the given edge.

Figure 6.3 shows the termination probability for A&A nodes in the Inclusion graph. We see that

25% of the A&A nodes have a termination probability of one, meaning that they never sell impres-

sions. The remaining 75% of A&A nodes exhibit a wide range of termination probabilities, corre-

sponding to different business models and roles in the ad ecosystem. For example, DoubleClick, the

most prominent ad exchange, has a termination probability of 0.35, whereas Criteo, a well-known

advertiser specializing in retargeting, has a termination probability of 0.63.

Figure 6.4 shows the mean incoming edge weights for A&A nodes in the Inclusion graph. We

observe that the distribution is highly skewed towards nodes with extremely high average incoming
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weights (note that the x-axis is in log scale). This demonstrates that heavy-hitters like DoubleClick,

GoogleSyndication, OpenX, and Facebook are likely to purchase impressions that go up for auction

in our simulations.

Indirect Propagation. At the time of this study, there was no way to systematically determine

which A&A domains are ad exchanges, or which pairs of A&A domains share information. Because

of that, precise accounting for indirect propagation was not possible. To compensate, I evaluated

three different indirect impression propagation models. Later, through my analysis of the ads.txt

standard in chapter 5, I isolate the list of A&A domains Eads.txt that act as ad exchanges and

incorporate that into my model.

Following are the three different models I evaluate for indirect propagation:

• Cookie Matching-Only: As I highlight in § 6.2.1, our dataset includes 200 empirically val-

idated pairs of A&A domains that match cookies. In this model, I treat these 200 edges as

ground-truth and only indirectly disseminate impressions along these edges. Specifically, if

ai observes an impression, it will indirectly share with aj iff ai → aj exists and is in the set

of 200 known cookie matching edges. This is the most conservative model I evaluate, and it

provides a lower-bound on impressions observed by A&A domains.

• RTB Relaxed: In this model, I assume that each A&A domain that observes an impres-

sion, indirectly shares it with all A&A domains that it is connected to. Although this is the

correct behavior for ad exchanges like Rubicon and DoubleClick, it is not correct for every

A&A domain. This is the most liberal model I evaluate, and it provides an upper-bound on

impressions observed by A&A domains.

• RTB Constrained: In this model, I select a subset of A&A domains E to act as ad exchanges.

Whenever an A&A domain in E observes an impression, it shares it with all directly con-

nected A&A domains, i.e., to solicit bids. This model represents a more realistic view of

information diffusion than the Cookie Matching-Only and RTB Relaxed models because the

graph contains few but extremely well-connected exchanges.

Figure 6.5 shows hypothetical examples of how impressions disseminate under my indirect mod-

els. Figure 6.5(a) presents the scenario: a graph with two publishers connected to two ad exchanges

and five advertisers. a2 is a bidder in both exchanges and serves as a DSP for a4 and a5 (i.e., it ser-

vices their ad campaigns by bidding on their behalf). Light grey edges capture cases where the two

endpoints have been observed cookie matching in the ground-truth data. Edge e2 → a3 is a false
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Figure 6.5: Examples of my information diffusion simulations. The observed impression count for
each A&A node is shown below its name. (a) shows an example graph with two publishers and two
ad exchanges. Advertisers a1 and a3 participate in the RTB auctions, as well as DSP a2 that bids
on behalf of a4 and a5. (b)–(d) show the flow of data (dark grey arrows) when a user generates
impressions on p1 and p2 under three diffusion models. In all three examples, a2 purchases both
impressions on behalf of a5, thus they both directly receive information. Other advertisers indirectly
receive information by participating in the auctions.

negative because matching has not been observed along this edge in the data, but a3 must match

with e2 to meaningfully participate in the auction.

Figure 6.5(b)–(d) show the flow of impressions under our three models. In all three examples, a

user visits publishers p1 and p2, generating two impressions. Further, in all three examples a2 wins

both auctions on behalf of a5; thus e1, e2, a2, and a5 are guaranteed to observe impressions. As

shown in the figure, a2 and a5 observe both impressions, but other nodes may observe zero or more

impressions depending on their position and the dissemination model. In Figure 6.5(b), a3 does not

observe any impressions because its incoming edge has not been labeled as cookie matched; this

is a false negative because a3 participates in e2’s auction. Conversely, in Figure 6.5(d), all nodes
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Figure 6.6: Fraction of impressions observed by A&A domains for RTB Constrained model under
|E| = 36 and E = Eads.txt.

always share all impressions, thus a4 observes both impressions. However, these are false positives,

since DSPs like a2 do not routinely share information amongst all their clients.

Selecting E for RTB Constrained. As I highlighted earlier, at the time of this study, I did

not have access to Eads.txt (list of ad exchanges from the ads.txt study). So, at the time of

the study, I used heuristics to select a subset of A&A domains as E for RTB Constrained. In

particular, I selected all A&A nodes with out-degree ≥ 50 and in/out-degree ratio r in the range

0.7 ≤ r ≤ 1.7 to be in E. These thresholds were chosen after manually looking at the degrees and

ratios for known ad exchanges (e.g., DoubleClick, OpenX, etc.) in chapter 4. This resulted in |E| =
36 A&A nodes being chosen as ad exchanges (out of 1,032 total A&A domains in the Inclusion

graph). I enforced restrictions on r because A&A nodes with disproportionately large amounts

of incoming edges are likely to be trackers (information enters but is not forwarded out), while

those with disproportionately large amounts of outgoing edges are likely SSPs (they have too few

incoming edges to be an ad exchange). Table 8.1 in the appendix shows the domains in E, including

major, known ad exchanges like App Nexus, Advertising.com, Casale Media, DoubleClick, Google

Syndication, OpenX, Rubicon, Turn, and Yahoo. 150 of the 200 known cookie matching edges in

our dataset are covered by this list of 36 nodes9.

It is quite possible that E contains false positives (A&A domains that are not ad exchanges but

are added in E) and false negatives (ad exchanges not added in E). This can introduce potential

errors in our RTB Constrained simulations. I improve upon this by using Eads.txt as E (i.e.,

E = Eads.txt), where Eads.txt is a list of A&A domains that act as ad exchanges in the ads.txt

9In the original publication of this study, all the analysis about RTB Constrained was done using |E| = 36 [25].
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dataset (see chapter 5). Figure 6.6 shows the fraction of total impressions (out of ∼5,300) observed

by A&A domains for RTB Constrained when 36 domains are manually selected as E (|E| = 36)

using the heuristics described above, and when E = Eads.txt. We can observe that the two

distributions are quite similar, i.e., A&A domains observe a similar fraction of impressions under

the two sets of ad exchanges. This is surprising since Eads.txt contains 1035 ad exchanges; far

more than |E| = 36. One would expect A&A domains to observe more impressions under the

Eads.txt distribution since it is more permissive. If anything, A&A domains observe slightly fewer

impressions under Eads.txt.

This surprising result has two explanations. First, the datasets used in these two studies were

collected at different times. The Inclusion graph is built from the dataset which was collected in

December 2015 (see § 4.1), whereas Eads.txt was isolated from the ads.txt dataset between

January 2018 and April 2019. There is almost a three-year gap between these two datasets. And

given how quickly the ad ecosystem is evolving (see § 6.3), the nodes in the Inclusion graph will be

different. In this particular case, out of 1035 ad exchanges from the ads.txt dataset, only 128 are

present in the Inclusion graph. Furthermore, out of those 128, only 19 were present in the manually

selected 36 ad exchanges.

Second, the Inclusion graph is extremely dense (see § 6.3). Due to that, RTB Constrained sim-

ulation becomes insensitive to the number of ad exchanges after a certain number of ad exchanges

have been selected in E. This is because a few well-connected ad exchanges can disperse the user

impressions to the majority of the A&A domains in the Inclusion graph, and selecting more ad

exchanges does not significantly change the amount of impressions learned. I demonstrate this

behavior in § 6.4.3.

In the rest of the analysis, I use Eads.txt as the list of ad exchanges for my RTB Constrained

simulations. Although, in the original publication of this study, I used 36 manually selected A&A

domains as ad exchanges in my analysis, results from Figure 6.6 demonstrate that results under the

two sets will be similar.

6.4.2.2 Node Blocking

To answer my third question, I must simulate the effect of “blocking” A&A domains on the

Inclusion graph. A simulated user that blocks the A&A domain aj will not make direct connections

to it (the solid outlines in Figure 6.5). However, blocking aj does not prevent aj from tracking

users indirectly: if the simulated user contacts ad exchange ai, the impression may be forwarded to
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aj during the bidding process (the dashed outlines in Figure 6.5). For example, an extension that

blocks a2 in Figure 6.5 will prevent the user from seeing an ad, as well as prevent information flow

to a4 and a5. However, blocking a2 does not stop information from flowing to e1, e2, a1, a3, and

even a2!

I evaluate five different blocking strategies to compare their relative impact on user privacy

under our three impression propagation models:

1. I randomly blocked 30% (310) of the A&A nodes from the Inclusion graph.10

2. I blocked the top 10% (103) of A&A nodes from the Inclusion graph, sorted by weighted

PageRank.

3. I blocked all 594 A&A nodes from the Ghostery [73] blacklist.

4. I blocked all 412 A&A nodes from the Disconnect [52] blacklist.

5. I emulated the behavior of AdBlock Plus [7], which is a combination of whitelisting A&A

nodes from the Acceptable Ads program [190], and blacklisting A&A nodes from EasyList [54].

After whitelisting, 634 A&A nodes are blocked.

I chose these methods to explore a range of graph theoretic and practical blocking strategies.

Prior work has shown that the global connectivity of small-world graphs is resilient against random

node removal [29], but I would like to empirically determine if this is true for ad network graphs

as well. In contrast, prior work also shows that removing even a small fraction of top nodes from

small-world graphs causes the graph to fracture into many subgraphs [132,195]. Ghostery and Dis-

connect are two of the most widely-installed tracker blocking browser extensions, so evaluating their

blacklists allows us to quantify how good they are at protecting users’ privacy. Finally, AdBlock

Plus is the most popular ad-blocking extension [122, 159], but contrary to its name, by default, it

whitelists A&A companies that pay to be part of its Acceptable Ads program [8]. Thus, I seek to

understand how effective AdBlock Plus is at protecting users’ privacy under its default behavior.

6.4.3 Validation

To confirm that my simulations are representative of our ground-truth data, I perform some

sanity checks. I simulate a single user in each model (who generates 5K impressions) and compare

the resulting simulated inclusion trees to the original, real inclusion trees.

10I also randomly blocked 10% and 20% of A&A nodes, but the simulation results were very similar to that of random 30%.
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Figure 6.9: Comparison of the original and simulated inclusion trees. Each bar shows the 5th, 25th,
50th (in black), 75th, and 95th percentile value.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F
 (

F
ra

c
. 

o
f 

P
u

b
li

s
h

e
rs

)

Frac. of A&A Contacted

CM

RTB-C

RTB-R

Figure 6.10: CDF of the frac-
tions of A&A domains con-
tacted by publishers in our orig-
inal data that were also con-
tacted in our three simulated
models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

Original

Simulation

C
D

F

# of Ad Exchanges per Tree

CM
RTB-C
RTB-R

Figure 6.11: Number of ad ex-
changes in our original (solids
lines) and simulated (dashed
lines) inclusion trees.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Fraction of Impressions

5

10

20

30

50

100

Figure 6.12: Fraction of im-
pressions observed by A&A do-
mains in RTB-C model when
top x exchanges are selected.

First, I look at the number of nodes that are activated by direct propagation in trees rooted at

each publisher. Figure 6.7 shows that out models are conservative in that they generate smaller

trees: the median original tree contains 48 nodes, versus 32, seven, and six from our models. One

caveat to this is that publishers in our simulated trees have a wider range of fan-outs than in the

original trees. The median publishers in the original and simulated trees have 11 and 12 neighbors,

respectively, but the 75th percentile trees have 16 and 30 neighbors, respectively.

Second, I investigate the depth of the inclusion trees. As shown in Figure 6.8, the median tree

depth in the original trees is three, versus two in all our models. The 75th percentile tree depth in

the original data is four, versus three in the RTB Relaxed and RTB Constrained models, and two in

the most restrictive Cookie Matching-Only model. These results show that overall, my models are

conservative in that they tend to generate slightly shorter inclusion trees than reality.
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Third, I look at the set of A&A domains that are included in trees rooted at each publisher.

For a publisher p that contacts a set Ao
p of A&A domains in my original data, I calculate fp =

|As
p ∩ Ao

p|/|Ao
p|, where As

p is the set of A&A domains contacted by p in simulation. Figure 6.10

plots the CDF of fp values for all publishers in our dataset, under our three models. I observe that

for almost 80% publishers, 90% A&A domains contacted in the original trees are also contacted in

trees generated by the RTB Relaxed model. This falls to 60% and 16% as the models become more

restrictive.

Fourth, I examine the number of ad exchanges that appear in the original and simulated trees.

Examining the ad exchanges is critical since they are responsible for all indirect dissemination

of impressions. As shown in Figure 6.11, inclusion trees from our simulations contain an order

of magnitude fewer ad exchanges than the original inclusion trees, regardless of model.11 This

suggests that indirect dissemination of impressions in my models will be conservative relative to

reality.

Number of Selected Exchanges. Finally, I investigate the impact of exchanges in the RTB

Constrained model. I select the top x A&A domains from Eads.txt sorted by the presence on the

unique number of publishers’ ads.txt files, then execute a simulation. As shown in Figure 6.12,

with 20 or more exchanges the distribution of impressions observed by A&A domains stops grow-

ing, i.e., my RTB Constrained model is relatively insensitive to the number of exchanges. This is not

surprising, given how dense the Inclusion graph is (see § 6.3). This also explains why we observed

similar distributions under two different sets of ad exchanges in Figure 6.6.12

6.4.4 Results

I take our 200 simulated users and “play back” their browsing traces over the unmodified Inclu-

sion graph, as well as graphs where nodes have been blocked using the strategies outlined above. I

record the total number of impressions observed by each A&A domain, as well as the fraction of

unique publishers observed by each A&A domain under different impression propagation models.

Triggered Edges. Table 6.3 shows the percentage of edges between A&A nodes that are trig-

gered in the Inclusion graph under different combinations of impression propagation models and

blocking strategies. No blocking/RTB Relaxed is the most permissive case; all other cases have

11Because each of my models assumes that a different set of A&A nodes are ad exchanges, we must perform three corresponding
counts of ad exchanges in our original trees.

12In the original publications, I selected the top x A&A domains by out-degree to act as exchanges (subject to their in/out-degree ratio
r being in the range 0.7 ≤ r ≤ 1.7) and PageRank. Results were similar to Figure 6.12.
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Table 6.3: Percentage of Edges that are triggered in the Inclusion graph during our simulations
under different propagation models and blocking scenarios. I also show the percentage of edge
Weights covered via triggered edges.

Blocking Cookie Matching-Only RTB Constrained RTB Relaxed
Scenarios %E %W %E %W %E %W

No Blocking 16.9 31.0 33.9 55.9 71.8 81.3
AdBlock Plus 12.3 28.0 25.6 50.3 48.4 68.6
Random 30% 12.1 21.8 22.1 34.2 48.7 54.8

Ghostery 3.52 9.87 6.82 18.2 13.5 21.9
Top 10% 6.03 5.01 8.18 5.52 26.8 13.4

Disconnect 2.98 3.66 4.72 6.01 16.3 11.6
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Figure 6.13: Fraction of impressions (solid lines) and publishers (dashed lines) observed by A&A
domains under our three models, without any blocking.

fewer edges and weight because (1) the propagation model prevents specific A&A edges from be-

ing activated and/or (2) the blocking scenario explicitly removes nodes. Interestingly, AdBlock Plus

fails to have a significant impact relative to the No Blocking baseline, in terms of removing edges

or weight, under the Cookie Matching-Only and RTB Constrained models. Further, the top 10%

blocking strategy removes fewer edges than Disconnect or Ghostery, but it reduces the remaining

edge weight to roughly the same level as Disconnect, whereas Ghostery leaves more high-weight

edges intact. These observations help to explain the outcomes of my simulations, which I discuss

next.

No Blocking. First, I discuss the case where no A&A nodes are blocked in the graph. Figure 6.13

shows the fraction of total impressions (out of ∼5,300) and fraction of unique publishers (out of

∼190) observed by A&A domains under different propagation models. I find that the distribution

of observed impressions under RTB Constrained is very similar to that of RTB Relaxed, whereas
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Table 6.4: Top 10 nodes that observed the most impressions under my simulations with no blocking.
Cookie Matching-Only RTB Constrained RTB Relaxed
doubleclick 90.1 google-analytics 97.1 pinterest 99.1
criteo 89.6 quantserve 92.0 doubleclick 99.1
quantserve 89.5 scorecardresearch 91.9 twitter 99.1
googlesyndication 89.0 youtube 91.8 googlesyndication 99.0
flashtalking 88.8 skimresources 91.6 scorecardresearch 99.0
mediaforge 88.8 twitter 91.3 moatads 99.0
adsrvr 88.6 pinterest 91.2 quantserve 99.0
dotomi 88.6 criteo 91.2 doubleverify 99.0
steelhousemedia 88.6 addthis 91.1 crwdcntrl 99.0
adroll 88.6 bluekai 91.1 adsrvr 99.0

observed impressions drop dramatically under the Cookie Matching-Only model. Specifically, the

top 10% of A&A nodes in the Inclusion graph (sorted by impression count) observe more than 97%

of the impressions in RTB Relaxed, 90% in RTB Constrained, and 29% in Cookie Matching-Only.

I observe similar patterns for fractions of publishers observed across the three indirect propagation

models. Recall that the Cookie Matching-Only and RTB Relaxed models function as lower- and

upper-bounds on observability; that the results from the RTB Constrained model are so similar to

the RTB Relaxed model is striking, given that only 128 nodes in the former spread impressions

indirectly, versus 1,032 in the latter.

Although the overall fraction of observed impressions drops significantly in the Cookie Matching-

Only model, Table 6.4 shows that the top 10 A&A domains observe 99%, 96%, and 89% of impres-

sions on average under RTB Relaxed, RTB Constrained, and Cookie Matching-Only respectively.

Some of the top-ranked nodes are expected, like DoubleClick, but other cases are more interest-

ing. For example, Pinterest is connected to 178 publishers and 99 other A&A domains. In the

Cookie Matching-Only model, it ranks 47 because it is directly embedded in relatively few publish-

ers, but it ascends to rank seven and one, respectively, once indirect sharing is accounted for. This

drives home the point that although Google is the most pervasively embedded advertiser around the

web [33, 168], there are a roughly 52 other A&A domains that also observe greater than 91% of

users’ browsing behaviors (in the RTB Constrained model), due to their participation in major ad

exchanges.

With Blocking. Next, I discuss the results when AdBlock Plus (i.e., the Acceptable Ads whitelist

and EasyList blacklist) is used to block nodes. AdBlock Plus has essentially zero impact on the

fraction of impressions observed by A&A domains: the results in Figure 6.14 under the RTB Con-
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Figure 6.16: Fraction of impressions observed by A&A domains under the RTB Constrained
(dashed lines) and RTB Relaxed (solid lines) models, with various blocking strategies.

Table 6.5: Top 10 nodes that observed the most impressions in the Cookie Matching-Only and
RTB Constrained models under various blocking scenarios. The numbers for the RTB Relaxed
model (not shown) are slightly higher than those for RTB Constrained. Results under blocking
random 30% nodes (not shown) are slighlty lower than no blocking.

AdBlock Plus w/ Acceptable Ads Disconnect Ghostery Top 10 %
CM-Only % RTB Constrained % CM-Only % RTB Constrained % CM-Only % RTB Constrained % CM-Only % RTB Constrained %
doubleclick 90.0 google-analytics 97.0 amazonaws 43.7 amazonaws 59.3 criteo 75.0 google-analytics 83.1 rubiconproject 64.3 doubleclick 80.6
quantserve 89.5 youtube 91.7 3lift 41.5 revenuemantra 51.6 googlesyndication 74.7 youtube 77.4 amazon-adsystem 64.2 doubleverify 80.6
criteo 89.4 quantserve 91.6 zergnet 40.9 bidswitch 50.8 2mdn 74.5 betrad 76.2 googlesyndication 64.2 googlesyndication 80.6
googlesyndication 88.9 scorecardresearch 91.6 celtra 40.5 jwpltx 50.5 doubleclick 74.5 acexedge 76.2 mathtag 52.5 moatads 80.6
dotomi 88.6 skimresources 91.3 sonobi 40.4 basebanner 50.4 adnxs 73.3 vindicosuite 76.2 undertone 52.1 2mdn 80.6
flashtalking 88.6 twitter 91.1 bzgint 40.2 zergnet 46.0 adroll 73.3 2mdn 76.1 sitescout 50.1 twitter 80.6
adroll 88.5 pinterest 91.0 eyeviewads 40.2 sonobi 45.8 adsrvr 73.3 360yield 76.1 doubleclick 49.8 bluekai 80.6
adsrvr 88.5 addthis 90.9 simplereach 40.0 adnxs 45.8 adtechus 73.3 adadvisor 76.1 adtech 49.7 google-analytics 80.5
mediaforge 88.5 criteo 90.9 richmetrics 39.9 adsafeprotected 45.8 advertising 73.3 adap 76.1 adnxs 49.7 media 80.5
steelhousemedia 88.5 bluekai 90.8 kompasads 39.9 adsrvr 45.8 amazon-adsystem 73.3 adform 76.1 mediaforge 49.6 exelator 80.5

strained and RTB Relaxed models are almost coincident with those for the models when no blocking

is applied at all. The problem is that the major ad networks and exchanges are all present in the Ac-

ceptable Ads whitelist, and thus all of their partners are also able to observe the impressions, even if

they are (sometimes) prevented from actually showing ads to the user. Indeed, the top 10 nodes in

Table 6.4 with no blocking and in Table 6.5 with AdBlock Plus are almost identical, save for some

reordering.

Next, I examine Ghostery and Disconnect in Figure 6.14. As expected, the amount of informa-

tion seen by A&A domains decreases when I block domains from these blacklists. Disconnect’s

blacklist [52] does a much better job of protecting users’ privacy in our simulations: after blocking

nodes using the Disconnect blacklist, 90% of the nodes see less than 40% of the impressions in the

RTB Constrained model and less than 53% in the RTB Relaxed model. In contrast, when using the

Ghostery blacklist [73], 90% of the nodes see less than 75% of the impressions in both RTB models.

Table 6.5 shows that top 10 A&A domains are only able to observe at most 40–59% and 73–83% of
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Figure 6.17: Fraction of impressions observed by A&A domains under the RTB Constrained with
various blocking strategies. AdBlock Plus performance is divided into (naive) Acceptable Ads,
Probabilistic Acceptable Ads, and Privacy Friendly criterias.

impressions when the Disconnect and Ghostery blacklists are used, respectively, depending on the

indirect propagation model.

As shown in Figure 6.15, blocking the top 10% of A&A nodes from the Inclusion graph (sorted

by weighted PageRank) causes almost as much reduction in observed impressions as Disconnect.

Table 6.5 helps to orient the top 10% blocking strategy versus Disconnect and Ghostery in terms

of the overall reduction in impression observability and the impact on specific A&A domains. In

contrast, blocking 30% of the A&A nodes at random has more impact than AdBlock Plus, but

less than Disconnect and Ghostery. Top 10 nodes under the “no blocking” and “random 30%”

(not shown) strategies observe similar impression fractions. Both of these results agree with the

theoretical expectations for small-world graphs, i.e., their connectivity is resilient against random

blocking, but not necessarily targeted blocking.

I do not show results for our most restrictive model (i.e., Cookie Matching-Only) in Figure 6.16,

since the majority of A&A domains view almost zero impressions. Specifically, 90% of A&A

domains view less than 0.2%, 0.3%, and 11% of the impressions under Ghostery, Disconnect, and

top 10% blocking. However, I do present the number of impressions seen by top 10 A&A domains

in the Cookie Matching-Only model in Table 6.5, which shows that even under strict blocking

strategies, top advertising companies still view 40–75% of the impressions.

Limitations in AdBlock Plus Blocking. I must translate rules from the EasyList and EasyPri-

vacy blacklists and the Acceptable Ads whitelist to use them in my simulations. Both of these

lists include rules containing regular expressions, URLs, and even snippets of CSS; I simplify them
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to lists of effective 2nd-level domains. Due to this translation, we may over-estimate impressions

seen by the whitelisted A&A domains, and under-estimate impressions seen by blacklisted A&A

domains. This could potentially explain the poor performance of AdBlock Plus blocking in my

simulations. Therefore, to effectively simulate AdBlock Plus’s behavior, we cannot simply extract

2nd-level domains from blacklists.

To solve this issue, I generate a probability of each A&A being blocked at a given publisher

p. In specific, I analyze all inclusion chains Cp associated with each publisher p. For each chain

c ∈ Cp, I traverse c to check each resource URL against the blacklist rules. I simply keep count of

the number of times a URL for a given A&A domain is blocked at p. Then, the probability of being

blocked of an A&A domain at a given publisher p is simply UBLOCKED/UALL, where UALL are

all the URLs for a given A&A domain at p and UBLOCKED ∈ UALL are all the URLs which are

blocked by AdBlock Plus. Then, I use these probabilities in my simulations to block a given A&A

node at publisher p according to these probabilities.

Figure 6.17 shows the fraction of impressions observed under the RTB Constrained model with

naive and probabilistic blocking using AdBlock Plus rules. The naive blocking is similar to that of

shown in Figure 6.14, where EasyList and EasyPrivacy rules were simplified by extracting effec-

tive 2nd-level domains. Probabilistic blocking is an improvement on the naive blocking using the

methodology described above. “Ghostery" and “No Blocking" lines are shown for reference. We

can see that AdBlock Plus performs much better under the probabilistic blocking scenario. How-

ever, it still under-performs Ghostery for 70% of A&A domains.

After the publication of this work, eyeo [63], the company which developed AdBlock Plus

asked us to run our simulations on their “privacy-friendly" Acceptable Ads list. This additional

list allows the user to view advertisements without third-party tracking [157]. Note: The “privacy-

friendly" feature is not enabled by default when you install the extension, whereas the Acceptable

Ads whitelisting option is. Figure 6.17 shows the results of RTB Constrained simulation results un-

der the “privacy-friendly" feature. We do see an improvement in terms of impressions observed over

the default behavior of AdBlock Plus, however, it still under-performs Ghostery for the majority of

A&A domains.

Summary. Overall, there are three takeaways from these simulations. First, the “no blocking”

simulation results show that top A&A domains are able to see the vast majority of users’ browsing

history, which is extremely troubling from a privacy perspective. For example, even under the most

constrained propagation model (Cookie Matching-Only), DoubleClick still observes 90% of all im-

94



CHAPTER 6. DIFFUSION OF USER TRACKING DATA

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

C
D

F

Impression Fraction Difference (Burken - Random) Per A&A Node

RTB Relaxed-Top 10%
RTB Relaxed-Disconnect

RTB Relaxed-Ghostery
RTB Relaxed-Random 30%

RTB Relaxed-No Blocking

Figure 6.18: Difference of impression fractions observed by A&A nodes with simulations between
Burklen et al. [31] and the random browsing model.

pressions generated by our simulated users. Second, it is troubling to observe that AdBlock Plus

barely improves users’ privacy, due to the Acceptable Ads whitelist containing high-degree ad ex-

changes. We do observe an improvement in AdBlock Plus when we block nodes probabilistically in

our simulations, it still under-performs all other blocking strategies. Third, I find that users can im-

prove their privacy by blocking A&A domains, but that the choice of blocking strategy is critically

important. I find that the Disconnect blacklist offers the greatest reduction in observable impres-

sions, while Ghostery offers significantly less protection. However, even when strong blocking is

used, top A&A domains still observe anywhere from 40–80% of simulated users’ impressions.

6.4.5 Random Browsing Model

Thus far, I have analyzed results for users that follow the browsing model from Burklen et

al. [31]. This is, to the best of my knowledge, the only empirically validated browsing model.

To check the consistency of our simulation results, I ran additional simulations using a random

browsing model, where the user chooses publishers purely at random and chooses whether to remain

on a publisher or depart using a coin flip.

I plot the results of the random simulations in Figure 6.18 as the difference in the fraction of

impressions observed by A&A domains under the RTB Relaxed model. Zero indicates that an A&A

domain observed the same fraction of impressions in both the Burklen et al. and random user simu-

lations, while <0 (>0) indicates that the node observed more impressions in the random (Burklen et

al.) simulations. Between 20–60% of A&A nodes observe the same amount of impressions regard-

less of model, but this is because these nodes all observe zero impressions (i.e., they are blocked).

This is why the fraction of A&A nodes that do not change between the browsing models is greatest
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with Disconnect. Although up to 10% of A&A nodes observe more impressions under the random

browsing model, the majority of A&A nodes that observe at least one impression observe more

overall under the Burklen et al. model.

Overall, Figure 6.18 demonstrates that the baseline browsing behavior exhibited by a user does

have a significant impact on their visibility to A&A companies. For example, using the Burklen et

al. model [31], the selected publishers contact top 10 A&A domains (sorted by PageRank) 2.6×
more than those selected by the random browsing model (and 4.6× if we consider the top 10 A&A

domains sorted by betweenness centrality).

Importantly, however, the relative effectiveness of blocking strategies remains the same under

a random browsing model. Disconnect still performed the best, followed by top 10%, Ghostery,

random 30%, and then AdBlock Plus. This suggests that my findings concerning the efficacy of

blocking strategies generalize to users with different browsing behaviors.

6.5 Limitations

As with all simulated models, there are some limitations to this work.

First, my models of indirect impression dissemination are approximations. The Cookie Matching-

Only and RTB Relaxed models should be viewed as lower- and upper-estimates, respectively, on

the dissemination of impressions, not as accurate reflections of reality (for the reasons highlighted

in Figure 6.5). I believe that the RTB Constrained model is a reasonable approximation, but even it

has flaws: it may still exhibit false positives, if non-exchanges are included in the set of exchanges

E, and false negatives if an actual exchange is not included in E. I described how data from the

ads.txt study can be used to extract a list of ad exchanges and us it RTB Constrained simula-

tions. The data for Inclusion graph and ads.txt was collected at different times. The ideal way

to conduct this simulation would be to fetch the ads.txt file for the publisher p around the same

time when inclusion resources are collected from p. Furthermore, it is not clear in general if ad ex-

changes always forward all impressions to all partners. For example, private exchanges that connect

high-value publishers (e.g., The New York Times) to select pools of advertisers behave differently

than their public cousins.

Second, these results are dependent on assumptions about the browsing behavior of users. I

present results from two browsing models in § 6.4.5 and show that many of my headline results

are robust. However, these findings should not be over-generalized: they are representative of an

average user, yet specific individuals may experience different amounts of tracking.

96



CHAPTER 6. DIFFUSION OF USER TRACKING DATA

Third, we must translate rules from the EasyList blacklist and the Acceptable Ads whitelist

to use them in our simulations. Both of these lists include rules containing regular expressions,

URLs, and even snippets of CSS; we simplify them to lists of effective 2nd-level domains. Due

to this translation, we may over-estimate impressions seen by the whitelisted A&A domains, and

under-estimate impressions seen by blacklisted A&A domains. I present an improvement on this

in § 6.4.4 by deriving probabilities of A&A domains being blocked at a given publisher, and using

those probabilities during simulations. Note that the Ghostery and Disconnect blacklists are not

affected by these issues.

Fourth, I analyze a dataset that was collected in December 2015. The structure of the Inclusion

graph has almost certainly changed since then. Furthermore, the edge weights between nodes may

differ depending on the initial set of publishers that are crawled. Although I demonstrate in § 6.2.4

that our dataset covers the vast majority of A&A domains, the connectivity, and weights between

A&A domains may change over time, as ad campaigns and money shift.

Fifth, this dataset does not cover the mobile advertising ecosystem, which is known to differ

from the web ecosystem [189]. Thus my results likely do not generalize to this area.

6.6 Sumamry

In this chapter, I introduced a novel graph model of the advertising ecosystem called an Inclu-

sion graph. This representation is enabled by advances in browser instrumentation [17, 112] that

allow researchers to capture the precise inclusion relationships between resources from different

A&A domains [21]. Using a large crawled dataset from chapter 4, I show that the ad ecosystem is

extremely dense. Furthermore, I compare our Inclusion graph representation to a Referer graph rep-

resentation proposed by prior work [78], and show that the Referer graph has substantive structural

differences that are caused by erroneously attributed edges.

I show that my proposed Inclusion graph can be used to implement empirically-driven simu-

lations of the online ad ecosystem. My results demonstrate that under a variety of assumptions

about user browsing and advertiser interaction behavior, top A&A domains observe the vast ma-

jority of users’ browsing history. Even under realistic conditions where only a small number of

well-connected ad exchanges indirectly share impressions, top 10% of A&A domains observe more

than 90% impressions and 82% publishers.

I also evaluate a variety of ad and tracker blocking strategies in the context of my models, to

understand their effectiveness at stopping A&A domains from learning users’ browsing history. On
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one hand, I find that blocking the top 10% of A&A domains, as well as the Disconnect blacklist, does

significantly reduce the observation of users’ browsing. On the other hand, even these strategies

still leak 40–80% of users’ browsing history to top A&A domains, under realistic assumptions.

This suggests that users who truly care about privacy on the web should adopt the most stringent

blocking tools available, such as EasyList and EasyPrivacy, or consider disabling JavaScript by

default with an extension like uMatrix [76].
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Conclusion

The rise of RTB has changed the privacy landscape significantly by forcing A&A companies

to collaborate more closely with one another. Without exchanging user data with each other, A&A

companies cannot successfully participate in RTB auctions. This massive amount of information-

sharing has increased the privacy digital footprint of users; due to RTB, tracking data is not just

observed by trackers embedded directly into web pages, but rather it is propagated to other A&A

companies in the advertising ecosystem. This data dissemination is further exacerbated by the fact

that ad exchanges send user impressions to several A&A companies to solicit bids during the RTB

auction. This increased amount of information-sharing among A&A companies has given rise to

the need for understanding the complexities and privacy implications of the modern ad ecosystem.

Although there has been prior empirical work on detecting information-sharing between A&A

companies [5, 65, 147], these works have technical limitations which have prevented researchers

from developing accurate models to demonstrate the privacy implications of RTB in the modern ad

ecosystem. The primary limitation of prior works on detecting information-sharing is their reliance

on heuristics that look for specific string signatures in HTTP messages. These heuristics are brittle

in the face of obfuscation: for example, DoubleClick cryptographically hashes their cookies before

sending them to other advertising partners [2, 147]. Additionally, analysis of client-side HTTP

messages is insufficient to detect server-side information flows between A&A companies. This

can happen if two ad networks decide to sync user tracking identifiers behind-the-scenes, without

relying on redirect through a user’s browser. These limitations may cause the privacy community to

under-estimate the privacy digital footprint of users, which, in turn, may affect the development of

effective privacy tools.

This thesis posits that RTB has increased collaboration among A&A companies, which, in turn,
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has increased privacy exposure for end-users. We need effective tools and methodologies to un-

derstand the privacy implications of RTB for users, to bridge the divide between the actual privacy

landscape and our understanding of it. These techniques can provide a more realistic view of the

online advertising ecosystem, and enable users to gain a more accurate view of their privacy digital

footprint.

7.1 Contributions & Impact

In this thesis, I present methods and tools to understand the privacy implications of the mod-

ern ad ecosystem, taking into account RTB and information-sharing among A&A companies. In

particular, my thesis makes the following contributions:

1. Generic Methodology for Detecting Information-sharing Among A&A companies. To

address the limitations of existing techniques [5,65,147], I propose a novel methodology that

can detect client- and server-side flows of information between arbitrary A&A companies

using retargeted ads. Retargeted ads are the most specific form of behavioral advertisements,

where a user is targeted with ads related to the exact products she has previously browsed.

My key insight is to leverage retargeted ads as a mechanism for identifying information flows

between arbitrary A&A companies. This methodology addresses the limitations of prior work

because it relies on the semantics of how exchanges serve ads, rather than focusing on specific

cookie matching mechanisms. Specifically, instead of relying on HTTP messages to detect

cookie matching, it relies on causality. Thus, this methodology can defeat obfuscation and

can detect server-side information sharing.

Based on extensive experiments, I demonstrate that information-sharing among A&A compa-

nies can be divided in to four categories that reveal 1) the pair of A&A companies that shared

information to serve the retargeted ad, and 2) the mechanism they used to share the data (e.g.,

cookie matching, server-side matching). Although I confirm that the key information-sharing

mechanism is client-side cookie-matching, my proposed methodology successfully identifies

server-side matching flows between Google services.

2. Identification of Ad Exchanges via ads.txt Standard. To model users’ privacy digital

footprint accurately, we need to identify not only the information-sharing relationships among

A&A domains but also a list of A&A domains that function as ad exchanges. Identifying ad
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exchanges accurately is crucial since they disperse user impressions to multiple other A&A

companies to solicit bids.

I identify a ground-truth set of ad exchanges by conducting a longitudinal analysis of a trans-

parency standard called ads.txt [83], which was introduced to combat ad fraud by helping

ad buyers verify authorized digital ad sellers. ads.txt is meant to bring more transparency

to the opaque ecosystem of RTB, by making it explicit which third-party domains in a given

first-party context are ad exchanges. I use this as an opportunity to gather a list of ad ex-

changes involved in the RTB ecosystem.

In particular, I conduct a 15-months longitudinal study of the standard to gather a list of A&A

domains that are labeled as ad exchanges (authorized sellers) by publishers in their ads.txt

files. Through my analysis on Alexa Top-100K, I observed that over 60% of the publishers

who run RTB ads have adopted the ads.txt standard. This widespread adoption allowed

me to explicitly identify over 1,000 A&A domains domains belonging to ad exchanges.

3. Modeling User’s Digital Privacy Footprint. Using the information flows between A&A

companies and the list of exchanges, I model the advertising ecosystem in the form of a graph

called an Inclusion graph. By simulating browsing traces for 200 users based on empirical

data, I show that the Inclusion graph can be used to model the diffusion of user tracking data

across the advertising ecosystem.

Through my analysis, I demonstrate that due to RTB, the majority of A&A domains observe

the vast majority of users’ browsing history. Even under restrictive conditions, where only

a small number of well-connected ad exchanges indirectly share impressions during RTB

auctions, the top 10% of A&A domains observe more than 91% of impressions and 82% of

visited publishers. This is a key result as it highlights that A&A domains observe far greater

amounts of user information than what has been demonstrated by prior works [5, 61].

I also evaluate the effectiveness of privacy tools (e.g., AdBlock Plus, Disconnect) at protect-

ing users’ privacy in the presence of RTB. I find that AdBlock Plus (the world’s most popular

ad-blocking browser extension [122, 159]) is ineffective at protecting users’ privacy because

major ad exchanges are whitelisted under the Acceptable Ads program [190]. In contrast,

Disconnect [52] blocks the most information flows to advertising domains, followed by the

removal of top 10% A&A domains. However, the most important observation throughout

these experiments is that even with strong blocking methods, major A&A domains still ob-

serve 40–70% of user impressions.
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The work described in this thesis has been published at top-level security and privacy venues.

My work on modeling the users’ privacy digital footprint received the best student paper at the Fu-

ture of Privacy Forum’s Annual Privacy Papers for Policymakers Awards [144]. This venue bridges

the gap between academia and policymakers by summarizing and distributing relevant papers di-

rectly to US lawmakers and their staff.

All the data from my thesis is made public for the community’s benefit. Datasets can be found

at:

1. https://personalization.ccs.neu.edu/Projects/Retargeting/

2. https://personalization.ccs.neu.edu/Projects/Adstxt/

3. https://personalization.ccs.neu.edu/Projects/AdGraphs/

Additionally, the tool used to crawl inclusion chains in my thesis is also publicly available at

https://github.com/sajjadium/DeepCrawling.

7.2 Limitations

In this section, I describe the limitations that should be considered for the results presented in

this thesis.

First, the dataset for information-sharing was collected in December 2015. This means that

while the methodology proposed in this thesis can be used for future studies, researchers should

be cautious when attempting to generalize specific results from my work. This is because of the

fast-evolving nature of the advertising ecosystem, in which A&A companies appear, merge, go out

of business, and adopt new technologies over time.

Second, in this thesis, I only consider static, image-based advertisements served through RTB

auctions. Video ads served through RTB are on the rise and should be integrated into the experi-

ments for future studies [15, 163, 196]. This way, we can also capture those A&A companies that

specialize in serving video ads.

Third, I have studied the information-sharing relationships on the web. However, my results

may not generalize to the mobile advertising ecosystem, since it is known to differ from the web

ecosystem [189].

Fourth, I rely on EasyList [54] and EasyPrivacy [55] to detect inclusion chains that end up

serving advertisements. These lists are manually curated over time and may have false negatives.

Furthermore, in my analysis I consider effective 2nd-level domains (e.g., google.com will be
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google), whereas these lists include rules containing regular expressions, URLs, and even snippets

of CSS. I simplify these rules to lists of effective 2nd-level domains for my comparison, which could

introduce some errors into my analysis of the capabilities of software relying on these lists (see

§ 6.5). In § 6.4.4, I provide a way to better model these rules.

Finally, to completely understand how much information is learned by an A&A company, we

need to account for all the domains it owns. For example, Google owns many A&A related domains

like DoubleClick, Google Analytics, Google Tag Manager, etc.. Although in my analysis I cluster

domains based on the parent company, this clustering is done manually. A better approach for

clustering might be to use external tools like WhoTracksMe [192].

Although my thesis addresses the technical limitations of prior work to provide much better esti-

mates of users’ privacy, we may still be under-estimating the digital footprint of users because of the

above-mentioned limitations. The results provided in this thesis are from a specific snapshot, and

might not capture privacy leakage to A&A companies that were inactive during the crawls. Lon-

gitudinal analysis is important to get a better understanding of users’ privacy health. Additionally,

this thesis does not account for A&A companies that specialize in specific business models (e.g.,

video ads, email-based ads [60]). Another reason why these results under-estimate privacy leakage

is that I do not account for (offline) information-sharing with data brokers [24] and information

aggregation across multiple devices (i.e., cross-device tracking) [201].

7.3 Lessons Learned

In this section, I share the key lessons from this thesis and discuss the topics which need attention

from the privacy community.

The ad ecosystem is extremely complex and opaque, and it is important to identify the right

methods and tools to study a certain problem. For example, if the goal is to understand the preva-

lence of trackers, there are public tools like OpenWPM [59], which the community can use. How-

ever, if the goal is to understand information flows between A&A companies, a tool like the one

used in this thesis, which provides detailed inclusion logs, is critical. Researchers working in this

space should strive to adopt the most appropriate tool for their particular use case.

The importance of manual analysis cannot be understated. The data collected through large-

scale crawls can be overwhelming, and coupled with the complex nature of the web, analysis can

often become a daunting task. One thing which always helped me was to randomly down-sample

logs and look at them manually. Investing a few hours initially on this process not only helped me
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understand how information flows on the web, but more often than not gave me key insights that I

would have missed otherwise.

I believe that researchers should shift their focus towards other sources of privacy leakage. Over

the years, significant progress towards unscrambling the complex ad ecosystem has been made.

From understanding the prevalence of trackers to the specific mechanisms of tracking (e.g., cookies,

fingerprinting), there is a plethora of literature available. In this thesis, I improve upon prior work

to provide techniques and methods for detecting flows of tracking information between arbitrary

A&A companies. Although we should continue to replicate existing studies to understand the fast-

evolving nature of the ad ecosystem, there are important topics that need the attention of the privacy

community.

There are three key areas that I think should be focused on. First, besides some initial work

on cross-device tracking [201], we still lack a good understanding of which A&A companies track

users across multiple devices, what mechanisms they use, and whether they share that information

with other business partners. Second, A&A companies are gradually moving towards acquiring

user information from data brokers like Acxiom and Bluekai. While we know that data brokers like

Acxiom and Bluekai exist and they have business relationships with several A&A companies, we

don’t have a complete understanding of the extent to which data sharing occurs through data brokers

and Data Management Platforms (DMPs). Third, we need tools to audit compliance with privacy

initiatives (e.g., GDPR, EU cookie directive) by A&A companies. These initiatives are against the

business interests of the ad industry, and A&A companies try their best to resist them [185]. The

research community is well positioned to provide tools and insights that promote accountability in

this sector.

With the amount of information users put online and the hunger of A&A companies to turn this

information into profit, the privacy landscape is getting worse. Although there are privacy tools

(e.g., tracker and ad-blocking extensions) that decrease users’ digital footprint, in chapter 6, I show

that these tools are not as effective as we think they are. Blocking individual trackers is not enough

as user data is transferred to the blocked trackers through extensive information-sharing. What is

even more troubling is that there are instances where sensitive private information is leaked and

sometimes even stolen, and there is nothing users can do about it [32, 126]. At a minimum, users

need access to transparency tools that enable them to understand and manage the data about them

held by third-parties.

As of this writing, there are only a handful of companies that provide such transparency tools

to let users control their data [24], and they are prone to have issues. In particular, they lack cover-
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age [14, 194], exclude sensitive user attributes [48], and infer noisy and irrelevant interests [24, 50,

186].

Even with these bleak conditions for privacy, users can still take certain steps to minimize their

privacy digital footprint. In particular, they can take the following steps:

• Make themselves more aware of the privacy issues.

• Use a privacy-friendly browser like Firefox, Brave, or Safari.

• Use effective privacy protection tools like uBlock Origin [90] or uMatrix [76].

• Use opt-out services provided by the Network Advertising Initiative [97] and the Digital

Advertising Alliance [12].

Regulators can also play a part by introducing more privacy legislation like the GDPR [41] and the

California Consumer Privacy Act [70].

7.3.1 Future Directions

While my thesis makes significant contributions towards the understanding of information-

sharing among A&A companies, and, in turn, the development of privacy-enhancing tools, there

is much more work needed to be done.

First, the ultimate goal of my research is not just to measure information flows among A&A

companies, but to facilitate the development of privacy-enhancing tools that can help users be in-

formed and in control of their private data. To that end, using my methodology to detect information-

sharing and then using my information diffusion models, researchers can build tools to let users

know which A&A company is viewing how much of their information. Furthermore, from the anal-

ysis I provide on evaluating the efficacy of tracker and ad-blocking extensions, users can then be

provided estimates on how their information leakage will change if they block certain A&A nodes

in the advertising graph.

Second, my content- and platform-agnostic methodology can be used to study the flows of

information across multiple platforms and devices. To gain a complete picture of user behavior

and interests across all devices, A&A companies identify all devices associated with a particular

user through cross-device tracking [30,201]. While prior works highlight that cross-device tracking

exists, they do not tell us which attribute(s) (e.g., email address, username, advertising ID) facilitated

cross-device tracking, nor do they identify the A&A companies which share information across

multiple devices.
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The detection of information-sharing flows between A&A companies across devices is particu-

larly challenging since the tracking mechanisms on these devices differ. For example, cookies are

used to track users on desktop devices, while advertising ID is used to track users on mobile apps.

My proposed methodology can be used to study cross-device tracking since it does not look for pat-

terns or identifiers in the network traffic, but rather relies on the causal inference of how a retargeted

ad is shown.

Third, my work can be used for auditing and informing future privacy policies. Recently,

browser vendors like Firefox, Safari, and Brave have started taking privacy initiatives. Firefox

removed cross-site tracking with their version 65 [66] and is taking measures to combat website

fingerprinting [67], and third-party storage access for trackers [68]. Safari has taken similar steps

to prevent cross-site tracking by introducing Intelligent Tracking Prevention [193].

Brave, on the other hand, provides built-in tracker and ad blocking [28].

While these initiatives are positive steps towards greater privacy for users, we as researchers

need to make sure that browsers are delivering what they are promising. We also have an opportunity

to work with browser vendors to help them address any short-comings in their approaches. For

example, in the past, companies have been known to track users by working around the privacy

policies established by browsers [44].

The ideal way to conduct such studies would be to perform large-scale crawls on these specific

browsers and collect detailed inclusion logs for further analysis. These logs can then be inspected for

unwanted inclusions and information-sharing. Persona-based experiments, as described in § 4.1.3,

can be used to gather concrete evidence for information-sharing. However, unlike Chrome, which

provides detailed logs through Chrome Debugging Protocol [38], development tools provided by

other browsers are limited in scope and could require extensive instrumentation.

Another important privacy initiative is the General Data Protection Regulation (GDPR) [41],

which went into force in May 2018 by the European Commission for EU users. Under GDPR,

both first- and third-parties need to obtain informed consent regarding the collection and processing

of data. Regulatory authorities can use methods and techniques proposed in this thesis to analyze

the flows of information between third parties, to study the relationships between user consent and

information flows between third-parties. Regulators can see not only information flows to trackers

present on websites, but also information-sharing behind the scenes (e.g., through or because of

RTB).

Finally, my work can be extended to study other standards that require information-sharing

among A&A companies. For example, Header Bidding (HB) is an emerging programmatic adver-
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tising mechanism that aims to remove the middle-man (ad exchanges) from the bidding process [51].

The key difference between RTB and HB is that under RTB, ad exchanges solicit bids and the client

only observes the winning DSP. Whereas, under HB, the publisher chooses which DSPs can bid on

its inventory and can receive bid responses from all the participating DSPs. Researchers can use the

lessons from this thesis to evaluate information leakage under the HB model.
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Chapter 8

Appendices

8.1 Clustered Domains

I clustered the following domains together when classifying publisher-side chains in § 4.3.1.2

Google: google-analytics, googleapis, google, doubleclick, gstatic, googlesyndication, googleuser-

content, googleadservices, googletagmanager, googletagservices, googlecommerce, youtube, ytimg,

youtube-mp3, googlevideo, 2mdn

OpenX: openxenterprise, openx, servedbyopenx

Affinity: affinitymatrix, affinity

Ebay: ebay, ebaystatic

Yahoo: yahoo, yimg

Mythings: mythingsmedia, mythings

Amazon: cloudfront, amazonaws, amazon-adsystem, images-amazon

Tellapart: tellapart, tellaparts

8.2 Selected Ad Exchanges

I select the ad exchanges shown in Table 8.1 from the Inclusion graph by thresholding nodes with

out-degree ≥ 50 and in/out degree ratio r in the range 0.7 ≤ r ≤ 1.7. One notable ommission from

this list is Facebook. The dataset used in this study was collected in December 2015. Facebook
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Table 8.1: Selected ad Exchanges. Nodes with out-degree ≥ 50 and in/out degree ratio r in the
range 0.7 ≤ r ≤ 1.7.

Node Out Degree In/Out Ratio
doubleclick 398 1.67

googleadservices 380 1.00
googlesyndication 318 1.28

adnxs 293 0.98
googletagmanager 253 0.98

2mdn 223 0.97
adsafeprotected 202 1.30
rubiconproject 191 1.14

mathtag 182 1.09
openx 170 0.79

pubmatic 157 0.96
casalemedia 136 1.10

krxd 134 1.08
adtechus 130 0.96

yahoo 124 1.31
chartbeat 124 0.96

contextweb 117 0.88
crwdcntrl 105 1.36

rlcdn 98 1.50
turn 86 1.48

amazon-adsystem 84 1.43
bzgint 72 0.86

monetate 72 0.76
rhythmxchange 71 1.13

rfihub 70 1.46
gigya 69 0.78
revsci 67 1.00
media 57 1.07
adtech 57 0.93

simplereach 57 0.84
tribalfusion 55 0.75

disqus 55 0.95
w55c 55 1.55
afy11 54 1.33

adform 52 1.62
teads 51 1.61

planned the shut down of its public ad exchange around that time [152], which it acquired from

LiveRail in 2014 [174].
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